首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development and photoluminescence analysis of Eu3+or Dy3+ ions in the matrix of lithium titanate (Li2TiO3) ceramics by using a solid state reaction method are reported. Emission spectra of Eu3+:Li2TiO3 ceramics have shown strong red emission at 611 nm (5D0 → 7F2) with λexci = 392 nm (7F0 → 5L6) and from the Dy3+:Li2TiO3, a blue emission at 493 nm (4F9/2 → 6H15/2) and also an yellow emission at 582 nm (4F9/2 → 6H13/2) have been observed with λexci = 366 nm (6H15/2 → 6P5/2). Both the rare-earth ions containing ceramics have displayed their brighter emission performance from their measured spectral results. In addition, X-ray diffraction (XRD), Fourier transform infra red (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) have been used to characterize the structural properties of (Eu3+ or Dy3+):Li2TiO3 ceramics.  相似文献   

2.
Ce0.9Gd0.1O1.95 powders were synthesized by spray drying and successive calcinations. The phase purity, BET surface area, and particle morphology of as-sprayed and calcined powders were characterized. After calcination above 300 °C, the powders were single phase and showed a BET surface area of 68 m2/g when calcined at 300 °C. The conductivity, in air, of sintered pellets was measured by electrochemical impedance spectroscopy (EIS) and it was found to be comparable with literature values. The activation energy for the total conductivity was around 0.83 eV. The powder calcined at lower temperature showed better sinterability and higher total conductivity due to an increased bulk conductivity.  相似文献   

3.
Cathode active materials with a composition of LiNi0.9Co0.1O2 were synthesized by a solid-state reaction method at 850 °C using Li2CO3, NiO or NiCO3, and CoCO3 or Co3O4, as the sources of Li, Ni, and Co, respectively. Electrochemical properties, structure, and microstructure of the synthesized LiNi0.9Co0.1O2 samples were analyzed. The curves of voltage vs. x in LixNi0.9Co0.1O2 for the first charge–discharge and the intercalated and deintercalated Li quantity Δx were studied. The destruction of unstable 3b sites and phase transitions were discussed from the first and second charge–discharge curves of voltage vs. x in LixNi0.9Co0.1O2. The LiNi0.9Co0.1O2 sample synthesized from Li2CO3, NiO, and Co3O4 had the largest first discharge capacity (151 mA h/g), with a discharge capacity deterioration rate of −0.8 mA h/g/cycle (that is, a discharge capacity increasing 0.8 mA h/g per cycle).  相似文献   

4.
A solid state metathesis approach has been applied to synthesize perovskite oxides such as BaTiO3, PbTiO3, K0.5Bi0.5TiO3 and Na0.5Bi0.5TiO3, these were characterized by powder XRD, IR and energy dispersive spectra (EDS). Potassium titanium oxalate and metal chlorides are used as the starting materials. X-ray analysis shows the formation of a single phase with tetragonal structure for BaTiO3, PbTiO3, K0.5Bi0.5TiO3 and a monoclinic structure for Na0.5Bi0.5TiO3. The Infrared spectra of these compounds show the characteristic band due to Ti–O octahedron for all the compounds. The EDS spectra show the relative ratio of the metal ions. The morphology of synthesized compounds was obtained from SEM measurements.  相似文献   

5.
The Bi0.5(Na0.7K0.2Li0.1)0.5TiO3 powder synthesis through molten salt method was investigated in the temperature range of 650–700 °C for 2–4 h. The XRD results indicated that the optimal synthesizing temperature for molten salt method was 700 °C, significantly lower than that for conventional processing route of solid state reaction method, where a calcining temperature of 850 °C was needed. The SEM results revealed better crystallization of the powders obtained through molten salt method, compared with those through the conventional processing route of solid state reaction method.  相似文献   

6.
Ce0.9Gd0.1O1.95 ceramics were prepared using a simple and effective process in this study. Without any prior calcination, the mixture of raw materials was pressed and sintered directly. The reaction of the raw materials occurred during the heating up period by passing the calcination stage in the conventional solid-state reaction method. More than 99.5% of theoretical density was obtained for Ce0.9Gd0.1O1.95 sintering at 1500–1600 °C. Fine grains (<1 μm) formed in pellets sintered at 1450 °C. The homogeneity of grains increased with the sintering temperature. The grains grew to >4.5 μm in pellets sintered at 1600 °C. The reactive-sintering process is proved to be a simple and effective method in preparing Ce0.9Gd0.1O1.95 ceramics for solid electrolyte application.  相似文献   

7.
Dy/Mn doped BaTiO3 with different Dy2O3 contents, ranging from 0.1 to 5.0 at% Dy, were investigated regarding their microstructural and dielectric characteristics. The content of 0.05 at% Mn was constant in all the investigated samples. The samples were prepared by the conventional solid state reaction and sintered at 1290°, and 1350 °C in air atmosphere for 2 h. The low doped samples (0.1 and 0.5 at% Dy) exhibit mainly fairly uniform and homogeneous microstructure with average grain sizes ranged from 0.3 μm to 3.0 μm. At 1350 °C, the appearance of secondary, abnormal, grains in the fine grain matrix and core–shell structure were observed in highly doped Dy/BaTiO3. Dielectric measurements were carried out as a function of temperature up to 180 °C. The low doped samples sintered at 1350 °C, display the high value of dielectric permittivity at room temperature, 5600 for 0.1Dy/BaTiO3. A nearly flat permittivity–temperature response was obtained in specimens with 2.0 and 5.0 at% additive content. Using a Curie–Weiss and modified Curie–Weiss low, the Curie constant (C), Curie like constant (C′), Curie temperature (TC) and a critical exponent (γ) were calculated. The obtained values of γ pointed out the diffuse phase transformation in highly doped BaTiO3 samples.  相似文献   

8.
Solid solutions of (Ba0.9−xSrxCa0.1)(Ti0.8Zr0.2)O3 (BSCTZ) (0.1≤x≤0.4) were prepared using the conventional solid state reaction method. The effects of the substitution content on the crystallographic structure, phase transition and dielectric properties of the samples were investigated by dielectric and Raman spectroscopy over a wide temperature range from 100 to 500 K. All the samples were noted to undergo a diffuse phase transition from the tetragonal to the cubic phase and to exhibit a relaxor ferroelectric behavior.  相似文献   

9.
(1 − x)Ba0.4Sr0.6TiO3/xCaCu3Ti4O12 composite ceramics were prepared by spark plasma sintering. Sintering behavior, microstructures and dielectric properties of the composite ceramics were investigated by XRD, SEM, EDS and dielectric spectrometer. Dense composite ceramics consisting of Ba0.4Sr0.6TiO3 phase and CaCu3Ti4O12 phase were prepared at 800 °C for 0 min. The dielectric loss of the composite ceramic decreased with increasing amount of Ba0.4Sr0.6TiO3, and the high dielectric constant were retained. Moreover, the better temperature stability of dielectric constant was obtained. These improvements of dielectric characteristics have great scientific significance for potential application.  相似文献   

10.
The thermoelectric properties of tungsten trioxide (WO3) ceramics doped with cerium dioxide (CeO2) were investigated. The results demonstrated that the addition of CeO2 to WO3 could promote the grain growth and the densification. The magnitude of the electrical conductivity (σ) and the absolute value of the Seebeck coefficient (|s|) depended strongly on the CeO2 content. The sample doped with 2.0 mol% CeO2 yielded higher σ and |s|, resulting in a significant increase in the power factor (σs2). In addition, the power factor value of all samples increased abruptly at high temperatures, which revealed that WO3-based ceramics could have greater thermoelectric properties at high temperatures.  相似文献   

11.
A semi-conducting ZnO-based multilayer varistor (MLV) is cofired with a passivation layer with Zn0.9Mg0.1TiO3 (ZMT) composition to prevent ZnO-based MLV from over-nickel coating during nickel plating. The cofiring results show that no de-lamination between ZMT and ZnO can be found, suggesting good co-firing compatibility between ZMT and ZnO though the anisotropic densification of ZMT is noted. However, the microstructure and electrical properties of ZnO based MLV is greatly influenced since ZMT is cofired with ZnO-based MLV. Reduction of grain size of ZnO-based MLV from 5.2 to 3.7 μm that is presumably attributed to constraining sintering of ZnO-based MLV by ZMT is observed after cofring ZMT. Simultaneously, the reduction of grain size of ZMT covered ZnO-based MLV results in a decrease of capacitance and in an increase of breakdown voltage. On the other hand, a decrease of non-linear coefficient and an increase of leakage current of ZMT covered ZnO-based MLV are observed as well. The results are associated with the change of slope of IV curve for ZMT covered ZnO-based MLV due to the formation of a semi-conducting Zn2TiO4 phase, which is resulted from the diffusion of titanium ion into the matrix of ZnO-based MLV during co-firing.  相似文献   

12.
Ultrafine powders of LiNi0.9Co0.1O2 were prepared under mild hydrothermal conditions. The product was characterized by XRD, TEM and EDS tests, which indicated that the obtained products were pure and well-crystallized LiNi0.9Co0.1O2. The ICP-AES results indicated the products were lithium-deficient compounds. The addition of KOH hardly effected the crystallinity of the product but gave larger crystals.  相似文献   

13.
The synthesis and transport properties of n-type thermoelectric oxide (ZnO)mIn2O3 (ZmIO) ceramics prepared by conventional solid-state reaction method have been reported. It is found that the transport properties of ZmIO ceramics are very sensitive to the post-annealing temperature as well as the zinc content m. The resistivity of Z5IO annealed at 1400 °C decreases by more than 2 orders of magnitude in comparison with that of Z5IO annealed at 1200 °C, while the resistivities of Z6IO compounds annealed at 1250 and 1350 °C are more than 3 orders of magnitude larger than that of Z6IO annealed at 1300 °C. All the ZmIO compounds annealed at 1300 °C show electron-type conduction with a lowest resistivity at m = 6. It is suggested that the oxygen defects or vacancies in the InO2 layers play a major role on the carrier scattering mechanism, and the observed temperature-dependent resistivity for Z5IO and Z6IO compounds can be satisfactorily described by the variable-range hopping conduction. Furthermore, it is found that the values of Seebeck coefficient for ZmIO are also very sensitive to the zinc content m. The dimensionless figure of merit of 0.0045 at 300 K for m = 6 has been obtained.  相似文献   

14.
Ca0.9La0.067TiO3 (abbreviated as CLT) ceramics doped with different amount of Al2O3 were prepared via the solid state reaction method. The anti-reduction mechanism of Ti4+ in CLT ceramics was carefully investigated. X-ray diffraction (XRD) was used to analyze the phase composition and lattice structure. Meanwhile, the Rietveld method was taken to calculate the lattice parameters. X-ray photoelectron spectroscopy (XPS) was employed to study the valence variation of Ti ions in CLT ceramics without and with Al2O3. The results showed that Al3+ substituted for Ti4+ to form solid solution and the solid solubility limit of Al3+ is near 1.11 mol%. Furthermore, the reduction of Ti4+ in CLT ceramics was restrained by acceptor doping process and the Q × f values of CLT ceramics were improved significantly. The CLT ceramic doped with 1.11 mol% Al2O3 exhibited good microwave dielectric properties: εr = 141, Q × f = 6848 GHz, τf = 576 ppm/°C.  相似文献   

15.
A series of Eu2+-activated Sr9Sc(PO4)7 yellowish-green emitting phosphors were synthesized by conventional solid-state reaction. The photoluminescence (PL) properties and concentration quenching mechanism of the as-prepared phosphors were investigated. The emission spectrum exhibits a broad and asymmetric band peaking at 510 nm, which corresponds to the 4f65d1→4f7 transition of Eu2+. The excitation spectrum exhibits a broad band extending from 250 to 450 nm, which matches well with the emission of near ultraviolet (n-UV) chips (350–430 nm). Non-radiative transitions between Eu2+ ions in the Sr9Sc(PO4)7 host have been demonstrated to be attributable to dipole–dipole interactions, and the critical distance was calculated to be 23.1 Å. These results indicate that Sr9Sc(PO4)7:Eu2+ phosphor could serve as a promising candidate for application in n-UV white-light LEDs.  相似文献   

16.
Zinc titanate (ZnTiO3) powders of perovskite structure were synthesized by conventional solid state reaction using metal oxides. Powders of ZnO and TiO2 in a molar ratio of 1:1 were mixed in a ball mill and then heated at temperatures from 700 to 1000 °C for various time periods in air. The crystallization temperature of ZnTiO3 powder was 820 °C, activation energy for crystallization was 327.14 kJ/mol and for grain growth was 48.84 kJ/mol. A transition point was observed when the electrical resistivity was measured versus temperature. Like some ferroelectric materials, a PTCR behavior above the transition temperature was observed with Curie temperature of 5 °C.  相似文献   

17.
(Bi0.5Na0.5)0.94Ba0.06TiO3xHfO2 [BNBT–xHfO2] lead-free ceramics were prepared using the conventional solid-state reaction method. Effects of HfO2 content on their microstructures and electrical properties were systematically studied. A pure perovskite phase was observed in all the ceramics with x=0–0.07 wt%. Adding optimum HfO2 content can induce dense microstructures and improve their piezoelectric properties, and a high depolarization temperature was also obtained. The ceramics with x=0.03 wt% possess optimum electrical properties (i.e., d33~168 pC/N, kp~32.1%, Qm~130, εr~715, tan δ~0.026, and Td~106 °C, showing that HfO2-modified BNBT ceramics are promising materials for piezoelectric applications.  相似文献   

18.
This paper investigated the influences of initial particle sizes on electrical properties and densification of laminated Ba1.002La0.003TiO3 ceramics prepared by the reduction–reoxidation technique. Ba1.002La0.003TiO3 powders with average size of∼820 nm and∼260 nm were prepared by the planet ball milling and the sand milling, respectively. For ceramic samples from ∼260 nm particles, the inflection point where the densification rate begins to decrease occurs at a higher sintering temperature than that of ceramic samples from∼820 nm particles. An abnormal growth of grains is observed in ceramic samples from∼820 nm particles, which resists reoxidation. Samples from∼260 nm particles are prone to be globally reoxidized and exhibit a much greater change in grain boundary resistance and RT resistivity after reoxidation. A possible mechanism of the oxygen diffusion in the reoxidation process is proposed, which verifies that samples with smaller grains as well as lower density are easily oxidized to a deeper degree.  相似文献   

19.
20.
Improved densification during the conventional sintering of KNbO3 ceramics was achieved by using small additions of TiO2. This improved densification can be explained on the basis of high-temperature chemical reactions in the system. X-ray diffractometry and electron microscopy were used in combination with diffusion-couple experiments in order to elucidate the chemical reactions between KNbO3 and TiO2. TiO2 reacts with KNbO3 forming KNbTiO5, and a low concentration of Ti incorporates in the KNbO3 structure resulting in the formation of oxygen vacancies and, consequently, in an improvement in the densification. At ∼1037 °C eutectic melting between the KNbO3 and the KNbTiO5 further improves the densification of the KNbO3 ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号