首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hot‐pressing kinetics of boron carbide at different stages in the hot‐pressing process was investigated. Based general densification equation and pore‐dragged creep model, the densification and grain growth kinetics were analyzed as a function of various parameters such as sintering temperature, sintering pressure and dwell time. Stress exponent of n ≈ 3 at the initial dwell stage suggests the plastic deformation may dominates the densification. The further TEM observations and the calculation based on effective stress and plastic yield stress also indicate that plastic deformation may occur and account for the large increase in density at the initial stage of sintering. Calculated grain size exponent of m ≈ 3 suggests that the grain‐boundary diffusion dominates the densification at the final stage. During the final stage of sintering, grain growth may be determined by evaporation/condensation and grain‐boundary migration.  相似文献   

2.
Master sintering curves were constructed for dry-pressed compacts composed of either a nanocrystalline or a microcrystalline ZnO powder using constant heating rate dilatometry data and an experimentally determined apparent activation energy for densification of 268±25 and 296±21 kJ/mol, respectively. The calculated activation energies for densification are consistent with one another, and with values reported in the literature for ZnO densification by grain boundary diffusion. Grain boundary diffusion appears to be the single dominant mechanism controlling intermediate-stage densification in both the nanocrystalline and the microcrystalline ZnO during sintering from 65% to 90% of the theoretical density (TD). Based on both the consistency of the calculated activation energy as a function of density and the narrow dispersion of the sintering data about the master sintering curve (MSC) for the nanocrystalline ZnO, there is no evidence of either significantly enhanced surface diffusion or grain growth during sintering relative to the microcrystalline ZnO. The MSC constructed for the nanocrystalline ZnO was used to design time–temperature profiles to successfully achieve four different target sintered densities on the MSC, demonstrating the applicability of the MSC theory to nanocrystalline ceramic sintering. The most significant difference in sintering behavior between the two ZnO powders is the enhanced densification in the nanocrystalline ZnO powder at shorter times and lower temperatures. This difference is attributed to a scaling (i.e., particle size) effect.  相似文献   

3.
《Ceramics International》2022,48(15):21756-21762
Understanding the densification and grain growth processes is essential for preparing dense alumina fibers with nanograins. In this study, the alumina fibers were prepared via isothermal sintering at 1200, 1300, 1400, and 1500 °C for 1–30 min. The phase, microstructure, and density of the sintered fibers were investigated using XRD, SEM, and Archimedes methods. It was found that the phase transformation during the isothermal sintering enhances the densification of Al2O3 fibers in the initial stage, while the pores generated during the phase transformation retard the densification in the later period. The kinetics and mechanisms for the densification and grain growth of the fibers were discussed based on the sintering and grain growth models. It was revealed that the densification process of the fibers sintered at 1500 °C is dominated by the lattice diffusion mechanism, while the samples sintered at 1200–1400 °C are dominated by the grain boundary diffusion mechanism. The grain growth of the Al2O3 fibers sintered at 1200–1300 °C is governed by surface-diffusion-controlled pore drag, and that sintered at 1400 °C is dominated by lattice-diffusion-controlled pore drag.  相似文献   

4.
This work investigates the feasibility to the fabrication of high density of fine alumina–5 wt.% zirconia ceramics by two-step sintering process. First step is carried out by constant-heating-rate (CHR) sintering in order to obtain an initial high density and a second step is held at a lower temperature by isothermal sintering aiming to increase the density without obvious grain growth. Experiments are conducted to determine the appropriate temperatures for each step. The temperature range between 1400 and 1450 °C is effective for the first step sintering (T1) due to its highest densification rate. The isothermal sintering is then carried out at 1350–1400 °C (T2) for various hours in order to avoid the surface diffusion and improve the density at the same time. The content of zirconia provides a pinning effect to the grain growth of alumina. A high ceramic density over 99% with small alumina size controlled in submicron level (0.62–0.88 μm) is achieved.  相似文献   

5.
Gd2Zr2O7 nanoceramics were fabricated using pressureless sintering method, in which the nanopowders were synthesized via solvothermal approach. The effects of starting powders on grain growth and densification during sintering of ceramics were revealed. Two distinct pressureless sintering methods were investigated, including conventional and two-step sintering. The sample grain size increases abruptly as sintering temperature increases during conventional sintering. In contrast, in two-step sintering, abnormal or discontinuous grain growth was suppressed in the second step, leading to Gd2Zr2O7 nanoceramics formation (average grain size 83 nm, relative density ∼93%). Such distinct behaviors may originate from the interplay between kinetic factors such as grain boundary migration and diffusion. Moreover, suppression of grain growth and promotion of densification in the two-step sintering are mainly due to dominant role of grain boundary diffusion during the second-step sintering process.  相似文献   

6.
The experimental densification kinetics of 7.8 mol% Y2O3-stabilized zirconia was analyzed theoretically during isothermal sintering in the final stage. By taking concurrent grain growth into account, a possible value of the grain-size exponent n was examined. The Coble’s corner-pore model recognized widely was found not to be applicable for explaining the densification kinetics. The corner-pore model of n = 4 shows a significant divergence in the kinetics at different temperatures. Microstructural observation shows that most pores are not located at grain corners and have a size comparable to the surrounding grains. The observed pore structure is similar to the diffusive model where single pore is surrounded by dense body. The diffusive model combined with theoretical sintering stress predicts n = 1 or n = 2, which shows a good consistence to the measured densification kinetics. During sintering of nano-sized powder, it is found that the densification kinetics can be explained distinctively by the diffusive single-pore model.  相似文献   

7.
Investigations into the sintering of submicron oxide powders have revealed interesting behavior, particularly insofar as it concerns their microstructural evolution in the early, low temperature transformations during heating. In this work, experiments were conducted on a submicron alumina powder, whose microstructural evolution and densification were characterized after sintering from 900 °C to 1400 °C in air, dry air and high vacuum (10−8 atm). The results indicated that the processing atmosphere strongly influences the particle size distribution at low temperatures before shrinkage occurs. Shrinkage began concomitantly with grain growth and the sintering atmosphere influenced the sintering kinetics. This factor, which is associated with previous narrowing of the particle size distribution, may affect grain growth and densification during the final stage of sintering.  相似文献   

8.
The sintering of single phase nano-crystalline In2O3 and ITO (In1.9Sn0.1O3.05) powders is reported and discussed with particular focus on the underlying mass transport mechanisms. The mass transport in the initial stage of sintering was surface diffusion, resulting in necking and coarsening, and grain boundary diffusion, accompanied by grain growth. Lattice diffusion caused significant densification at higher temperatures, leading to densities higher than 95%. The onset of densification and the maximum densification rate were shifted significantly to higher temperatures for ITO compared to In2O3. The reduced sintering rate of ITO was related to the higher valence state of Sn4+ relative to In3+, and due to precipitation of SnO2(s). The volatile sub-oxides In2O(g) and SnO(g) caused significant weight losses at high temperatures, particularly in the case of ITO and inert conditions. The sintering at intermediate temperatures is discussed with focus on heat treatment of ITO thin films.  相似文献   

9.
Fully dense ceramics with retarded grain growth can be attained effectively at relatively low temperatures using a high-pressure sintering method. However, there is a paucity of in-depth research on the densification mechanism, grain growth process, grain boundary characterization, and residual stress. Using a strong, reliable die made from a carbon-fiber-reinforced carbon (Cf/C) composite for spark plasma sintering, two kinds of commercially pure α-Al2O3 powders, with average particle sizes of 220 nm and 3 μm, were sintered at relatively low temperatures and under high pressures of up to 200 MPa. The sintering densification temperature and the starting threshold temperature of grain growth (Tsg) were determined by the applied pressure and the surface energy relative to grain size, as they were both observed to increase with grain size and to decrease with applied pressure. Densification with limited grain coarsening occurred under an applied pressure of 200 MPa at 1050 °C for the 220 nm Al2O3 powder and 1400 °C for the 3 μm Al2O3 powder. The grain boundary energy, residual stress, and dislocation density of the ceramics sintered under high pressure and low temperature were higher than those of the samples sintered without additional pressure. Plastic deformation occurring at the contact area of the adjacent particles was proved to be the dominant mechanism for sintering under high pressure, and a mathematical model based on the plasticity mechanics and close packing of equal spheres was established. Based on the mathematical model, the predicted relative density of an Al2O3 compact can reach ~80 % via the plastic deformation mechanism, which fits well with experimental observations. The densification kinetics were investigated from the sintering parameters, i.e., the holding temperature, dwell time, and applied pressure. Diffusion, grain boundary sliding, and dislocation motion were assistant mechanisms in the final stage of sintering, as indicated by the stress exponent and the microstructural evolution. During the sintering of the 220 nm alumina at 1125 °C and 100 MPa, the deformation tends to increase defects and vacancies generation, both of which accelerate lattice diffusion and thus enhance grain growth.  相似文献   

10.
《应用陶瓷进展》2013,112(5):301-310
Abstract

Abstract

Sintering involves consolidation of powders under the application of heat to form solids of higher density and is often the final step in the processing of ceramic materials. The time–temperature cycles used in sintering affect the kinetics and, in turn, influence the quality of the sintered product. Considering the densification mechanisms controlled by grain boundary diffusion along with interface reaction and the grain growth mechanism, this paper presents a systematic numerical study on the sintering of nanocrystalline yttria tetragonal stabilised zirconia and microscaled α-alumina, to bring out the effects of the time–temperature cycles on their sintering behaviour. Effects of initial grain size are also examined. Based on the studies, empirical correlations are developed that relate the final grain size and the sintering time to the temperature cycle. The results serve as guidelines in the design of time–temperature cycles for the sintering of the two material systems considered.  相似文献   

11.
研究了超细Y-TZP和YSZ粉料成型体在烧结中期的晶粒生长、气孔生长和致密化行为.根据作者前文  相似文献   

12.
A semiempirical model for intermediate-stage sintering is developed based on simultaneously occurring volume and grain-boundary diffusion mechanisms of mass transport and explicitly incorporating the effects of grain growth. The sintering equation derived depends strongly on the reduction of pore number density associated with grain growth and is independent of the mechanism of grain growth. The time and temperature dependencies of densification predicted by the equation, which are tested using data for metal and ceramic powders, agree well with observations. The data indicate that grain-boundary diffusion contributes negligibly to densification.  相似文献   

13.
The sintering behaviour of freeze-granulated UO2-PuO2 powders containing 33 and 15 mol% Pu/(U + Pu) was investigated under reducing conditions up to 1700 °C. For both compositions, the “grain size versus relative density” trajectory was constructed. All the experimental points form a single trajectory meaning that a relative density/grain size pair obtained after sintering seems independent of the thermal path (heating rate, soak time, soak temperature) and of the Pu content. Exploiting the “grain size versus relative density trajectory” enabled also to propose that densification was controlled by grain boundary diffusion and grain growth by the grain boundaries whatever the Pu content. An activation energy around 510 kJ/mol was obtained for densification, which was close to the value reported for the grain boundary diffusion of plutonium cations in U1-xPuxO2 polycrystals. Whatever the Pu/(U + Pu) content, the sintered microstructure of 98 % dense samples possesses a homogeneous distribution of plutonium and uranium cations.  相似文献   

14.
A comprehensive mathematical model for the CO2‐catalyzed sintering of CaO is proposed. It takes into account the mechanisms of surface diffusion and grain boundary diffusion, catalyzed by CO2 chemisorption and dissolution, respectively. In addition, the model proposed here considers the change in pore size distribution during sintering, grain growth, and the densification by lattice diffusion, which is the intrinsic sintering mechanism of the CaO. Model predictions are validated using experimental data on the sintering of two CaO samples, one of them derived from pure CaCO3 and the other from limestone. It is found that impurities in limestone‐derived CaO do not significantly affect the CO2 dissolution or chemisorption processes; however, they strongly increase the rate of sintering by lattice diffusion. It is also established that low temperatures and CO2 partial pressures promote the coarsening by surface diffusion, whereas high temperatures and CO2 partial pressures favor densification. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3286–3296, 2017  相似文献   

15.
The particle size of CoFe2O4 powders (average particle size of 350 nm) was reduced to 50 nm by high-energy milling. In this paper, special attention was given for analyzing the densification and grain growth of both particle sizes (350 and 50 nm) subject to ultrafast sintering assays using microwave sintering and their effect on the magnetic and electric properties. The results indicated that the grain growth was 10 times higher for the nanoparticle system, reaching similar sizes of ~1 μm in both cases after sintering. The relative density values were higher (95%) in the nanoparticle system due to the wide distribution of particle sizes generated in the grinding process. Qualitatively inferred microscopy analysis showed high sinterability of fine particles with a narrow distribution of grain size when subjected to ultrafast firing processes. Magnetization measurements at room temperature clearly show the reduction of Hc with increasing grain size. Electric resistivity, dielectric constant (ε′), and dielectric loss tangent (tan δ) were measured as a function of frequency at room temperature. The low values of dielectric constant (ε′) and dielectric loss (tan δ) in the low frequency range, shown for all samples sintered by microwave, prove the excellent uniformity in the microstructure.  相似文献   

16.
Nanocrystalline Y2O3 powders with 18 nm crystallite size were sintered using spark plasma sintering (SPS) at different conditions between 1100 and 1600 °C. Dense specimens were fabricated at 100 MPa and 1400 °C for 5 min duration. A maximum in density was observed at 1400 °C. The grain size continuously increased with the SPS temperature into the micrometer size range. The maximum in density arises from competition between densification and grain growth. Retarded densification above 1400 °C is associated with enhanced grain growth that resulted in residual pores within the grains. Analysis of the grain growth kinetics resulted in activation energy of 150 kJ mol?1 and associated diffusion coefficients higher by 103 than expected for Y3+ grain boundary diffusion. The enhanced diffusion may be explained by combined surface diffusion and particle coarsening during the heating up with grain boundary diffusion at the SPS temperature.  相似文献   

17.
The addition of small quantities of aluminum oxide (Al2O3) to 8 mol% yttria-stabilized zirconia (8YSZ) benefits conventional sintering by acting as a sintering aid and altering grain growth behavior. However, it is uncertain if these benefits observed during conventional sintering extend to flash sintering. In this work, nanoscale films of Al2O3 are deposited on 8YSZ powders by particle atomic layer deposition (ALD). The ALD-coated powders were flash sintered using voltage-to-current control and current rate experiments. The sintering behavior, microstructural evolution, and ionic conductivities were characterized. The addition of Al2O3 films changed the conductivity of the starting powder, effectively moving the flash onset temperature. The grain size of the samples flashed with current rate experiments was ~65% smaller than that of conventionally sintered samples. Measurement of grain size and estimates of sample density as a function of temperature during flash sintering showed that small quantities of Al2O3 can enhance grain growth and sintering of 8YSZ. This suggests that Al2O3 dissolves into the 8YSZ grain boundaries during flash sintering to form complexions that enhance the diffusion of species controlling these processes.  相似文献   

18.
An ultrafine powder of SnO2 has been synthesized by a gas flow condensation method. The average particle size of the powder was about 40 nm. The effect of the green density on the subsequent densification and grain growth of the ultrafine SnO2 during sintering has been studied. A loose green compact consolidated under 500 MPa (green MC) showed rapid densification as well as rapid grain growth at relatively low sintering temperatures. A dense green compact fabricated under 4.5 GPa (green GC) exhibited a slow increase in the density and almost no grain growth even at high sintering temperatures.  相似文献   

19.
Processing of dense high-entropy boride ceramics   总被引:1,自引:0,他引:1  
Dense (Hf0.2,Zr0.2,Ti0.2,Ta0.2,Nb0.2)B2 high-entropy ceramics with high phase purity were produced by two-step spark plasma sintering of precursor powders synthesized by boro/carbothermal reduction of oxides. The reacted powders had low oxygen (0.404 wt%) and carbon (0.034 wt%) contents and a sub-micron average particle size (∼0.3 μm). Powders were synthesized by optimizing the excess B4C content of the reaction mixture and densified by a two-step spark plasma sintering process. The relative density increased from 98.9% to 99.9% as the final sintering temperature increased from 2000 °C to 2200 °C. The resulting ceramics were nominally single-phase (Hf,Zr,Ti,Ta,Nb)B2 with oxygen contents as low as 0.004 wt% and carbon as low as 0.018 wt%. The average grain size increased from 2.3 ± 1.2 μm after densification at 2000 °C to 4.7 ± 1.8 μm after densification at 2100 °C, while significant grain growth occurred during sintering at 2200 °C. The high relative densities, low oxygen and carbon contents, and fine grain sizes achieved in the present study were attributed to the use of synthesized precursor powders with high purity and fine particle size, and the two-step synthesis-densification process. These are the first reported results for dense high-entropy boride ceramics with high purity and fine grain size.  相似文献   

20.
Green compacts pressed by means of uniaxial compaction with Magnesia (MgO) powders precipitated from sea water and calcined at different temperatures were sintered under H2 atmosphere at 1700 °C. The calcination, carried out between 900 and 1200 °C had a great influence in the final density and the microstructure. The densification of MgO agglomerated powders seems to be predictably related to grain growth and thus coarsening kinetics. At calcination temperatures higher than 900 °C, the volume of large pores was increased notably suggesting that the inhibited grain growth adversely affected the thermodynamics of pore sintering. Relative densities between 74 and 98% of theoretical density were reached in compacts obtained at different compaction pressures. The microstructural differences were examined by Scanning Electron Microscopy (SEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号