首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is highly challenging to fabricate bioceramic scaffolds mimicking architecture and mechanical strength of cancellous bone. Gyroid structure, which is based on triply periodic minimal surface, highly resembles the architecture of cancellous bone. Herein, β-tricalcium phosphate (β-TCP) bioceramic scaffolds with gyroid structure were fabricated by stereolithography (SLA) 3D printing. The SLA 3D printing ensured high precision of ceramic part. The porosity (51–87%), pore size (250 – 2400 µm), pore wall thickness (< 300 µm) and compressive strength (0.6 – 16.8 MPa) of gyroid bioceramic scaffolds were readily adjusted to match various sites of cancellous bone. The gyroid bioceramic scaffolds were more favorable for cell proliferation than the grid-like bioceramic scaffolds. The cancellous-bone-mimicking gyroid bioceramic scaffolds with tunable architecture and mechanical strength were expected to efficiently repair the target bone defects.  相似文献   

2.
β-Tricalcium phosphate (TCP) macroporous ceramics were produced by a new manufacturing procedure. A polymeric scaffold constituted of polymethylmethacrylate balls (PMMA), welded together by a thermal forming treatment, is impregnated with a TCP aqueous suspension. After drying step, the thermal removal of the organic compound generates an interconnected macroporosity inside the piece. The coalescence of PMMA balls during the thermal forming treatment follows a sintering mechanism of viscous flow type. This behaviour allows to control the dimension of bridging between particles and thus, the interconnection between pores of sintered material. This new process allows to carry out materials with macropore dimensions which can vary between 100 μm at several millimetres and a perfectly controlled size of interconnection ranging between 0.3 and 0.6 times the macropore diameter. Total porosity volume evolves in an interval from 70 to 80%.  相似文献   

3.
《Ceramics International》2016,42(4):5141-5147
All porous materials have a common limitation which is lack of strength due to the porosity. In this study, two different methods have been used to produce porous β-tricalcium phosphate (β-TCP) scaffolds: liquid-nitrogen freeze casting and a combination of the direct-foaming and sacrificial-template methods. Among these two methods, porous β-TCP scaffolds with acceptable pore size and compressive strength and defined pore-channel interconnectivity were successfully fabricated by the combined direct-foaming and sacrificial-template method. The average pore size of the scaffolds was in the range of 100–150 µm and the porosity was around 70%. Coating with 4 wt% alginate on porous β-TCP scaffolds led to higher compressive strength and low porosity. In order to make a chemical link between the β-TCP scaffolds and the alginate coating, silane coupling agent was used. Treated β-TCP scaffold showed improvements in compressive strength of up to 38% compared to the pure β-TCP scaffold and 11% compared to coated β-TCP scaffold.  相似文献   

4.
The effect of the sintering conditions (temperature and time) on the microstructure (density and grain size) and mechanical properties (hardness, elastic modulus, and strength) of β-tricalcium phosphate (β-TCP) bioceramics fabricated from Ca-deficient commercial powders is analyzed. Contrary to current general opinion, it is demonstrated that the optimal sintering temperature to maximize the mechanical performance of this β-TCP material is not necessarily below the β ? α transformation temperature (1125 °C). In particular, optimal performance was achieved in samples sintered at 1200 °C for 3 h, since it was not until higher temperatures or longer sintering times that microcracking develops and mechanical properties are degraded. It is argued that the residual stresses developed during this reversible transformation do not lead to microcrack propagation until sufficiently large starting flaws develop in the microstructure as a consequence of grain growth. Implications of these findings for the processing routes to improve sintering of this important bioceramic are discussed.  相似文献   

5.
《Ceramics International》2017,43(9):6778-6785
In this study, for the first time honeycomb β-tricalcium phosphate (β-TCP) scaffolds were fabricated through an extrusion technique. The physicochemical properties and cell behaviors of the honeycomb β-TCP scaffolds were investigated. The results showed that scaffolds were characterized by ordered channel-like macropores and unidirectional interconnection. The pore structure and mechanical strength could be tailored by changing the parameters of extrusion molds. The pore size of scaffolds was in the range of 400–800 µm approximately, while their compressive strength parallel to the pore direction and porosity ranged from 14 to 20 MPa and 60–70%, respectively. The in vitro cell behavior demonstrated that cells could well attach on the surfaces and grow into the inner channel-like pores of thescaffolds; the scaffolds with higher porosity showed better cell proliferation but poorer cell differentiation. The honeycomb scaffolds fabricated by extrusion technique are potential candidate for bone tissue engineering.  相似文献   

6.
Carbon nanofibers decorated with β-tricalcium phosphate (β-TCP) nanoparticles (β-TCP/CNFs) have been prepared by sintering electrospun polyacrylonitrile fibers with calcium nitrate tetrahydrate as the calcium source and triethyl phosphate as the phosphorus source. Microstructure and phase composition analysis indicate that the resulting materials are composed of β-TCP nanoparticles and CNFs. And the long β-TCP/CNFs can be cut into organism-eliminable short CNFs gradually in hydrochloric acid solution due to the solubilization of β-TCP nanoparticles. The materials exhibit good biocompatibility, and have comparable effect on cell growth with pure CNFs, with their tuning ability in degradation.  相似文献   

7.
《Ceramics International》2021,47(18):25863-25874
The inherent brittleness of bioceramics restricts their applications in load-bearing implant, although they possess good biocompatibility and bioactivity. ZnO, MgO and 58S bioglass (BG) were incorporated as additives to further improve the mechanical properties and biocompatibility of β-TCP and ZnO/MgO/BG-β-TCP composite scaffolds were manufactured via digital light processing (DLP). The composite with the best comprehensive performance was selected for degradation behavior and biocompatibility evaluation. The effects of different proportions of ZnO/MgO/BG on mechanical strength were analyzed and ZnO0·5/MgO1/BG2-β-TCP (ZMBT) samples exhibited superior mechanical strength. The improvement by 272% and 99% respectively was achieved in fracture toughness and compressive strength with the optimal recipe. The enhancement effect is realized through phase transition, alterative sliding actions and transgranular fracture to effectively prevent the load transfer combining the functions of bioglass and metal oxide. ZMBT scaffolds exhibited a more desirable pH environment and an enhanced ability of apatite-mineralization formation, meanwhile Si4+, Mg2+ and Zn2+ were gradually released from scaffolds. Furthermore, in vitro evaluation indicated that ZMBT scaffolds presented not only excellent cell attachment, proliferation, alkaline phosphatase (ALP) activity, but they up-regulated osteogenic gene (ALP, OCN, Runx2). These results suggest that the addition of ZnO/MgO/BG to DLP-printed β-TCP scaffolds offer a smart strategy to fabricate porous scaffolds with conspicuously better biological and physicochemical properties including compressive strength, bioactivity, osteogenesis and osteogenesis-related gene expression. Metal-oxide and BG synergistically enhanced the mechanical and biological properties which make the ZMBT scaffolds a strong candidate for bone repair applications.  相似文献   

8.
In this research, biphasic β-tricalcium phosphate/carbonate apatite (β-TCP/CO3Ap) scaffolds incorporated with alginate were fabricated. Sodium alginate was extracted from local brown seaweed, Sargassum polycystum via calcium alginate process. Biphasic β-TCP/CO3Ap scaffolds were fabricated by polymer reticulate method. β-TCP slurry was infiltrated into the polyurethane foam (PU) foam, then sintered up to 1300?°C, soaked for 4?h and immediately quenched in still air to form biphasic β-TCP/α-TCP scaffold. Biphasic β-TCP/α-TCP scaffold was then transformed to biphasic β-TCP/CO3Ap scaffold by dissolution-precipitation reaction with 1?M of NaHCO3 at 170?°C for 1, 3 and 5 days. Biphasic β-TCP/CO3Ap scaffold from 5 days dissolution-precipitation reaction was chosen to incorporate with 1%, 3% and 5% of sodium alginate, respectively, as it has the highest composition of CO3Ap phase. FTIR and FESEM analysis confirmed the presence of characteristic functional groups of sodium alginate. Mechanical strength of biphasic β-TCP/CO3Ap scaffold improved by increasing the concentration of sodium alginate. The highest mechanical strength achieved was 26.38 kPa for biphasic β-TCP/CO3Ap scaffold with 5% sodium alginate coating and it was chosen to further study with the addition of 1%, 3% and 5% microspheres. FESEM analysis confirmed the attachment of microspheres on the surface of alginate/biphasic β-TCP/CO3Ap scaffold was successful.  相似文献   

9.
《Ceramics International》2022,48(11):15791-15799
With the aim to understand electric polarization mechanisms of β-tricalcium phosphate as an advanced biomaterial, Na ion-substituted β-Ca3(PO4)2 (Na-β-TCPs) ceramics with controlled lattice vacancies were synthesized and structural refinement was performed by the Rietveld method. The Rietveld analysis revealed that Ca and vacancies at Ca(4) sites in the β-TCP structure decreased with an increase in Na substitution. Electrical measurements by the complex impedance method revealed that the conductivity and the activation energy calculated from Cole-Cole plots rapidly decreased to a constant value with an increase in Na substitution and decrease in vacancies. The thermally stimulated depolarization current (TSDC) curve of the electrically polarized Na-β-TCP showed one large peak at 530–610 °C. However, the accumulated charge decreased with an increase in Na ions and decrease in vacancies up to 2.37 mol%, after which it became constant. These results are consistent with the presumed formation of a dipole moment between aligned Ca2+ ions and their vacancies along the direction of the external polarization field applied at high temperature. We conclude that the large amount of stored charge in β-TCP caused by electrical polarization is due to the low site occupancy of calcium ions and vacancies at Ca(4) sites in the β-TCP structure, which is not the case for hydroxyapatite (HAp), as previously reported.  相似文献   

10.
β-tricalcium phosphate bioceramics suffer from a drawback of poor mechanical strength and a scarcity of capacity to regulate biological performances. In the current study, the overall performances of β-tricalcium phosphate (TCP) bioceramics were improved by incorporating calcium silicate (CS) and magnesium-strontium phosphate (MSP). During the sintering process, the MSP stabilized the β phase of TCP, and the formation of MSP melt ensured effective liquid-sintering of TCP, thus conducing to lower porosity of TCP/MSP and TCP/CS/MSP bioceramics. In comparison with the TCP bioceramics, the TCP/CS and TCP/MSP bioceramics showed lower compressive strength, while the TCP/CS/MSP bioceramics attained noticeably higher compressive strength. Due to the sustained release of therapeutical ions, the TCP/CS bioceramics enhanced in vitro early-stage osteoblastic differentiation, but compromised cell proliferation; both the TCP/MSP and TCP/CS/MSP bioceramics enhanced cell proliferation and osteoblastic differentiation, and restrained osteoclastic activities. Collectively, the TCP/CS/MSP bioceramics with optimal overall performances are promising for efficaciously treating the defects of osteoporotic bone.  相似文献   

11.
In this study, gelatin/beta tricalcium phosphate (β-TCP) nanocomposite scaffolds were prepared by solvent casting method. The cross-linking method was carried out by adding formaldehyde to gelatin. The microparticles of sodium chloride were used as porogen agent. Characterization of nano β-TCP was performed using XRD, FTIR, and SEM. Results showed that the size of the particles is about 100 nm with spherical morphology. In addition, the scaffold characterization was carried out using FTIR and SEM techniques. Observations showed a porous texture with pore size between 100 and 400 μm. The biodegradability and bioactivity evaluations of the scaffolds were done by immersing them in a simulated body fluid solution for different time periods. The biodegradability studies demonstrated a reduction in the degradation rate of gelatin/β-TCP nanocomposite scaffolds due to the presence of β-TCP nanoparticles. The obtained results of bioactivity tests confirmed the formation of apatite layer on the surface of the scaffolds. Furthermore, the effects of porosity, cross-linking agent, and β-TCP nanoparticles on the bending and compressive properties of the composite scaffolds were examined. According to the mechanical examinations of the scaffolds, the best bending and compressive properties occurred in the presence of 10 and 20 wt% of β-TCP nanoparticles, respectively. The appropriate mechanical properties and biodegradation rate for tissue engineering applications obtained at 1 g of the formaldehyde solution.  相似文献   

12.
A new method to enhance the flexural strength of porous β-tricalcium phosphate (β-TCP) scaffolds was developed. This new method provides better control over the microstructures of the scaffolds and enhances the scaffolds’ mechanical properties. Using this technique, we were able to produce scaffolds with mechanical and structural properties that cannot be attained by either the polymer sponge or slip-casting methods alone or by simply combining the polymer sponge and slip-casting methods. The prepared scaffolds had an open, uniform, interconnected porous structure with a bimodal pore size of 100.0–300.0 μm. The flexural strength of the bimodal porous β-TCP scaffold sintered at 1200 °C was 56.2 MPa and had porosity of 61.4 vol%. The scaffolds obtained provide good mechanical support while maintaining bioactivity, and hence, these bioscaffolds hold promise for applications in hard-tissue engineering.  相似文献   

13.
《Ceramics International》2022,48(18):26274-26286
Nowadays, the repair of long bone defects remains a clinical challenge mainly due to poor oxygen and nutrients delivery. In this study, β-tricalcium phosphate (β-TCP) porous ceramic scaffolds were prepared by digital light processing (DLP) and gradient sintering process. The functionalization of scaffolds was achieved by loading hyaluronic acid-dopamine (HA-DA) coating or sphingosine 1-phosphate/hyaluronic acid-dopamine (S1P/HA-DA) coating, which solved the problem of oxygen and nutrients delivery to a certain extent by promoting blood vessels growth. Cytocompatibility assay, qRT-PCR, Alkaline phosphatase (ALP) staining and quantitative analysis demonstrated that the S1P/HA-DA/TCP scaffolds significantly promoted the proliferation and osteogenic differentiation of mouse bone marrow mesenchymal stem cells (mBMSCs). Long bone defects (22 mm), rarely reported in previous studies, were constructed on the radius of rabbits. Animal experiments showed excellent early angiogenesis and bone repair in HA-DA/TCP and S1P/HA-DA/TCP groups. In particular, the S1P/HA-DA/TCP scaffolds enhanced bone regeneration and osseointegration. Overall, these functionalized scaffolds had an effective repair on long bone defects that would have great potential for clinical applications.  相似文献   

14.
Tricalcium phosphate and synthesized fluorapatite powder were mixed in order to elaborate biphasic ceramics composites. The effect of fluorapatite addition on the densification and the mechanical properties of tricalcium phosphate were measured with the change in composition and microstructure of the bioceramic. The Brazilian test was used to measure the mechanical resistance of the tricalcium phosphate–26.52 wt% fluorapatite composites. The densification and rupture strength increase versus sintering temperature. The composites have a good sinterability and rupture strength in temperature ranging between 1300 and 1400 °C. Thus, the densification ultimate was obtained at 1350 °C and the mechanical resistance optimum reached 9.6 MPa at 1400 °C. Above 1400 °C, the densification and the mechanical properties were hindered by the allotropic transformation of tricalcium phosphate, grain growth and the formation of both intragranular porosity and many cracks. The 31P magic angle spinning nuclear magnetic resonance analysis of composites reveals the presence of tetrahedral P sites.  相似文献   

15.
《Ceramics International》2020,46(10):16364-16371
β-tricalcium phosphate (β-TCP), a well-accepted synthetic bone grafting biomaterial, is confronted with limitations of poor phase stability and lacking the capacity to mediate the biological functions. In the current study, gallium (Ga) was substituted for calcium in the β-TCP, and the influences of Ga substitution on the phase stability, compressive strength and cellular response of β-TCP bioceramics were investigated. The results indicated that substitution of at least 2.5 mol% Ga for calcium prevented the β-TCP from transforming into α-TCP at 1250 °C. The β-TCP bioceramics substituted with 2.5 mol% Ga attained the highest compressive strength. The β-TCP bioceramics substituted with 2.5 and 5 mol% Ga showed good cytocompatibility, and suppressed in vitro osteoclastic activity as well as osteoblastic differentiation. Considering the favorable mechanical strength and the inhibitory effect on the osteoclastic activity, the β-TCP bioceramics substituted with 2.5 mol% Ga are promising for treating the bone defect in the pathological state of excessively rapid bone resorption.  相似文献   

16.
《Ceramics International》2018,44(18):22686-22691
This study demonstrates the pore structures and mechanical properties of porous aluminum titanate‒strontium feldspar‒mullite fiber (ASM) composite ceramics. Samples were prepared using two different processes. A traditional reactive sintering method, with Al2O3 and TiO2 as raw materials, was used to prepare one group of samples, and an improved method, using aluminum titanate (AT) clinkers, was used to prepare another group of samples. The effects of the processes and raw materials on the pore structure and mechanical properties of the composite ceramics were investigated. The properties of the sintered porous ceramics, including the microstructure, density, porosity, pore size, and mechanical properties, were analyzed. After sintered at 1400 °C, the ASM ceramics that were prepared using the improved method had a porosity level of 70% and a pore size of 24 µm, which were twice that of the traditional ASM ceramics, while both samples had identical flexural strength values of 2.27 MPa. The improved process endowed the porous ASM ceramics with excellent pore structures and mechanical properties, promoting their potential use in filter applications.  相似文献   

17.
β-tricalcium phosphate (β-TCP) is an ideal biomaterial for the bone repair because of its biocompatibility and biodegradability. In this study, 0 mol%, 5 mol%, 15 mol% and 30%mol bivalent manganese ion (Mn2+) doped β-TCP (Mn-TCP) powders were synthesized by a sol-gel method. The amount of the dopants significantly influences the crystallinity and the parameters related with structure of β-TCP, such as the lattice parameters and crystallite dimensions. The particle size and the particle distribution of doped β-TCP powers were evaluated as well. Meanwhile, the as-synthesized powders were consolidated by sintering at 1000 °C in muffle furnace for 5 h to get Mn-TCP porous material and the degradation experiment was carried out in Simulated Body Fluid (SBF) solution for 28 days. Then, Mn-TCP porous material were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). Significantly, there were bone-like apatite materials deposited on the surface of bone-like porous materials. With the increasing doping amount of Mn2+, the newly formed apatite-like materials decreased, while the crystallinity increased significantly. Besides, pH results showed that alkaline environment was more favorable for the formation of sedimentary materials.  相似文献   

18.
Organo-modified nanoclay incorporated high internal phase emulsions (HIPEs) were successfully used for the preparation of macroporous nanocomposite foams. Due to the aim of obtaining mechanically improved foams, HIPEs were prepared by using a monomer mixture composed of β-myrcene and ethylene glycol dimethacrylate. Accordingly, two groups of macroporous nanocomposite foams were synthesized depending on the nanoclay type. The morphological analysis demonstrated that the pore openness of the resulting nanocomposites were significantly improved due to the decrease in the average cavity size and increase in the interconnected pore size. In terms of mechanical properties, it was found that filling 1 wt% of nanoclay which is surface modified by hydrogenated tallow lead to a 33% of increment in the compression modulus, as compared to the neat foam. However, loading 5 wt% of nanoclay having octadecylamine and aminopropyltriethoxysilane surface groups caused only 11% of increment in the compression modulus, as compared to the neat foam.  相似文献   

19.
β-tricalcium phosphate (β-TCP, β-Ca3(PO4)2) is an attractive biomaterial for bone repair applications. However, its sintering and mechanical properties are limited by a problematic phase transition to α-TCP. Cationic doping of β-TCP is able to postpone the formation of α-TCP allowing higher sintering temperatures and better mechanical properties. The co-doping of β-TCP with Mg2+ and Sr2+ has already been studied in detail, but the addition of antibacterial cations (Ag+ and Cu2+) on the Mg–Sr β-TCP co-doped composition remains unexplored. Thus, two co-doped β-TCP compositions were realized by aqueous precipitation technique without any secondary phase and compared with undoped β-TCP: Mg–Sr (2.0–2.0 mol%) and Mg–Sr–Ag–Cu (2.0–2.0–0.1–0.1 mol%). Differential thermal analysis and dilatometry analyses showed a slight decrease of the β-TCP → α-TCP phase transition temperature for the Mg–Sr–Ag–Cu (2.0–2.0–0.1–0.1% mol) composition as compared to the Mg–Sr (2.0–2.0 mol%). However, both exhibited much higher transition temperatures than undoped β-TCP. The addition of Ag+ and Cu2+ slightly reduces the grain size after sintering compared to the Mg–Sr (2.0–2.0 mol%) and the undoped compositions. The co-doped compositions also exhibited improved mechanical properties, specifically a higher Vickers hardness and elastic modulus. Finally, cell proliferation assays showed that the presence of dopants, even Ag+ and Cu2+, does not affect the survival and proliferation of cells. Thus, the use of Mg2+, Sr2+, Ag+, and Cu2+ co-doped β-TCP could be very promising for biomedical applications due to the improvements of these dopants on the thermal stability and mechanical and biological properties.  相似文献   

20.
β-Tricalcium phosphate (β-TCP) had been widely used in the field of bone defect repair because of its osteoconduction and osteoinduction properties. However, for critical-sized bone defects, β-TCP scaffolds need to be functionalised to enhance osteoinduction and antibacterial activity. In this study, we proposed a protocol for mimicking a mussel adhesion mechanism to immobilise bone morphoprotein 2 mimetic peptide (BMP2-MP) and Ornithodoros savignyi (OS) on a three-dimensionally printed β-TCP scaffold. BMP2-MP and the OS polypeptides containing the YKYKY tail were converted into 3,4‐dihydroxyphenylalanine (DOPA) molecules via hydroxylase. The surface morphology and phase composition of the different scaffolds were analysed via scanning electron microscopy and X-ray diffraction. In addition, the binding activity of BMP2-MP and OS containing the DOPA tail to the scaffold were evaluated. The antibacterial activity of the different scaffolds was studied in vitro by performing bacteriostatic experiments against Escherichia coli and Staphylococcus aureus. The osteoinduction capability of the different scaffolds was evaluated by detecting osteogenesis-associated genes via quantitative polymerase chain reaction and by determining alkaline phosphatase expression levels. Our results demonstrated that introduction of the DOPA tail enhanced the binding capability of BMP2-MP and OS with the β-TCP scaffold, thereby enhancing the antibacterial and osteoinduction capabilities of the scaffold. A scaffold with strong antibacterial and osteoinduction capability will have good application prospects in the field of critical-sized bone defect repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号