首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The increasing importance of nanotechnology in the field of biomedical applications has encouraged the development of new nanomaterials endowed with multiple functions. Novel nanoscale drug delivery systems with diagnostic, imaging and therapeutic properties hold many promises for the treatment of different types of diseases, including cancer, infection and neurodegenerative syndromes. Carbon nanotubes (CNTs) are both low-dimensional sp2 carbon nanomaterials exhibiting many unique physical and chemical properties that are interesting in a wide range of areas including nanomedicine. Since 2004, CNTs have been extensively explored as drug delivery carriers for the intracellular transport of chemotherapy drugs, proteins and genes. In vivo cancer treatment with CNTs has been demonstrated in animal experiments by several different groups. Herein, the recent works on anticancer drug delivery systems based on carbon nanotubes are reviewed and some of more specific and important novel drug delivery devices are discussed in detail. This paper focuses on modifications of CNTs by polymers through covalent and non-covalent attachments: two different methods as critical steps in preparation of anticancer drug delivery systems from CNTs. In this respect the in vivo and in vitro behaviors and toxicity of the CNTs modified by polymers are summarized as well. Well-functionalized CNTs did not show any significant toxicity after injection into mice. Moreover, administration and excretion of CNT-based nanocarriers are discussed. It was concluded that future development of CNT-based nanocarriers may bring novel opportunities to cancer diagnosis and therapy.  相似文献   

2.
Carbon nanotubes (CNTs) are capable of traversing cellular membranes by endocytosis and are therefore promising materials for use in imaging and drug delivery. Unfortunately, pristine CNTs are practically insoluble and tend to accumulate inside cells, organs and tissues. To overcome the poor dispersibility and toxicity of pristine CNTs, hydrophilic functionalization of CNTs has been intensively investigated. Water‐soluble multi‐walled carbon nanotubes (MWCNTs) were prepared by in situ polymerization of acrylic acid in a poor solvent for poly(acrylic acid) (PAA). The solvent type influenced the grafted density and chain length of PAA. MWCNTs with a high grafted density of PAA (22 wt%) could be well dispersed in water, NaCl aqueous solution (0.9 wt%) and cell culture media. The in vitro cytotoxicity of these MWCNTs for endothelial cells is reasonably low even at high concentration of PAA‐g‐MWCNT (70 µg mL?1). The experimental results show that the biocompatibility of these MWCNTs is sufficient for biological applications. PAA‐g‐MWCNTs were successfully utilized for lymph node tracing. Experimental results suggest that PAA‐g‐MWCNTs have potential to be used as a vital staining dye, which may simplify the identification of lymph nodes during surgery. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
The allotropes of carbon nanomaterials (carbon nanotubes, graphene) are the most unique and promising substances of the last decade. Due to their nanoscale diameter and high aspect ratio, a small amount of these nanomaterials can produce a dramatic improvement in the properties of their composite materials. Although carbon nanotubes (CNTs) and graphene exhibit numerous extraordinary properties, their reported commercialization is still limited due to their bundle and layer forming behavior. Functionalization of CNTs and graphene is essential for achieving their outstanding mechanical, electrical and biological functions and enhancing their dispersion in polymer matrices. A considerable portion of the recent publications on CNTs and graphene have focused on enhancing their dispersion and solubilization using covalent and non-covalent functionalization methods. This review article collectively introduces a variety of reactions (e.g. click chemistry, radical polymerization, electrochemical polymerization, dendritic polymers, block copolymers, etc.) for functionalization of CNTs and graphene and fabrication of their polymer nanocomposites. A critical comparison between CNTs and graphene has focused on the significance of different functionalization approaches on their composite properties. In particular, the mechanical, electrical, and thermal behaviors of functionalized nanomaterials as well as their importance in the preparation of advanced hybrid materials for structures, solar cells, fuel cells, supercapacitors, drug delivery, etc. have been discussed thoroughly.  相似文献   

4.
Quantum dots (QDs) are highly fluorescent nanocrystals with advanced photophysical and spectral properties: high brightness and stability against photobleaching accompanied by broad excitation and narrow emission spectra. Water‐soluble QDs functionalized with biomolecules, such as proteins, peptides, antibodies, and drugs, are used for biomedical applications. The advantages of QD‐based approaches to immuno‐histochemical analysis, single‐molecule tracking, and in vivo imaging (over traditional methods with organic dyes and fluorescent proteins) are explained. The unique spectral properties of QDs offer opportunities for designing systems for multiplexed analysis by multicolor imaging for the simultaneous detection of multiple targets. Conjugation of drug molecules with QDs or their incorporation into QD‐based drug‐delivery particles makes it possible to monitor real‐time drug tracking and carry out image‐guided therapy. Because of the tunability of their photophysical properties, QDs emitting in the near‐infrared have become an attractive tool for deep‐tissue mono‐ and multiphoton in vivo imaging. We review recent achievements in QD applications for bioimaging, targeting, and drug delivery, as well as challenges related to their toxicity and non‐biodegradability. Key and perspectives for further development of advanced QD‐based nanotools are addressed.  相似文献   

5.
Inorganic nanoparticles as carriers for efficient cellular delivery   总被引:2,自引:0,他引:2  
Cellular delivery involving the transfer of various drugs and bio-active molecules (peptides, proteins and DNAs, etc.) through the cell membrane into cells has attracted increasing attention because of its importance in medicine and drug delivery. This topic has been extensively reviewed. The direct delivery of drugs and biomolecules, however, is generally inefficient and suffering from problems such as enzymic degradation of DNAs. Therefore, searching for efficient and safe transport vehicles (carriers) to delivery genes or drugs into cells has been challenging yet exciting area of research. In past decades, many carriers have been developed and investigated extensively which can be generally classified into four major groups: viral carriers, organic cationic compounds, recombinant protiens and inorganic nanoparticles. Many inorganic materials, such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide and layered double hydroxide (LDH), have been studied. Inorganic nanoparticles show low toxicity and promise for controlled delivery properties, thus presenting a new alternative to viral carriers and cationic carriers. Inorganic nanoparticles generally possess versatile properties suitable for cellular delivery, including wide availability, rich functionality, good biocompatibility, potential capability of targeted delivery (e.g. selectively destroying cancer cells but sparing normal tissues) and controlled release of carried drugs. This paper reviews the latest advances in inorganic nanoparticle applications as cellular delivery carriers and highlights some key issues in efficient cellular delivery using inorganic nanoparticles. Critical properties of inorganic nanoparticles, surface functionalisation (modification), uptake of biomolecules, the driving forces for delivery, and release of biomolecules will be reviewed systematically. Selected examples of promising inorganic nanoparticle delivery systems, including gold, fullerences and carbon nanotubes, LDH and various oxide nanoparticles in particular their applications for gene delivery will be discussed. The fundamental understanding of properties of inorganic nanoparticles in relation to cellular delivery efficiency as the most paramount issue will be highlighted.  相似文献   

6.
The effects of the encapsulation of drugs and other molecules of biomedical interest by cucurbit[n]uril (n=5–8, 10) host molecules on the chemical properties of the drugs in aqueous solution are reviewed. The cucurbituril complexation of drug molecules has been shown to generally increase the guests’ pKa values through preferential inclusion of the protonated species, modulate other equilibria involving the guest, improve the solubility in aqueous solution, reduce the toxicity and other side effects, as well as enhance the stability and targeted delivery of the drug molecule. These benefits have led to an increasing interest in the applications of cucurbit[n]urils in novel drug formulations.  相似文献   

7.
This report explores the available curative molecules directed against hepatocellular carcinoma (HCC). Limited efficiency as well as other drawbacks of existing molecules led to the search for promising potential alternatives. Understanding of the cell signaling mechanisms propelling carcinogenesis and driven by cell proliferation, invasion, and angiogenesis can offer valuable information for the investigation of efficient treatment strategies. The complexity of the mechanisms behind carcinogenesis inspires researchers to explore the ability of various biomolecules to target specific pathways. Natural components occurring mainly in food and medicinal plants, are considered an essential resource for discovering new and promising therapeutic molecules. Novel biomolecules normally have an advantage in terms of biosafety. They are also widely diverse and often possess potent antioxidant, anti-inflammatory, and anti-cancer properties. Based on quantitative structure–activity relationship studies, biomolecules can be used as templates for chemical modifications that improve efficiency, safety, and bioavailability. In this review, we focus on anti-HCC biomolecules that have their molecular targets partially or completely characterized as well as having anti-cancer molecular mechanisms that are fairly described.  相似文献   

8.
Cucurbit[n]urils (CB[n]s) have emerged as potential candidates for drug delivery in several areas due to their strong binding interactions and low toxicity. More recently, their benefits for a type of cancer treatment termed Photodynamic Therapy (PDT) have been recognized. The outcomes of this therapy rely on better drug delivery strategies and improving overall photoactivity of the drugs, which is where CB[n]s could have a strong impact. The effects of these molecular containers on photoactivity are discussed and new interesting work is highlighted.  相似文献   

9.
The influences of the dispersion level of carbon nanotubes (CNTs) and functionalized CNTs on the transmittance properties of ultrahigh‐molecular weight polyethylene (UHMWPE) gel solutions and on ultradrawing properties of their as‐prepared fibers are reported. The transmittance properties suggest that the dispersion level of functionalized CNTs in UHMWPE/functionalized CNTs gel solution is significantly better than plain CNTs in UHMWPE/CNTs gel solutions. The orientation factors, achievable draw ratios, tensile strength (σf), and modulus (E) values of UHMWPE/CNTs (FxCy) and UHMWPE/functionalized CNTs (FxCf‐y) as‐prepared fiber specimens reached a maximum value as their CNT and functionalized CNT contents approached optimum contents at 0.00015 and 0.0001 wt%, respectively. The σf and E values of both FxC0.0012 and FxCf‐0.001 series fiber specimens prepared at their optimum CNT and functionalized CNT contents reached another maximum as their UHMWPE approached optimum UHMWPE concentration of 1.7 wt%. Possible reasons accounting for these interesting properties are proposed. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

10.
Design and synthesis of pH responsive polymeric materials has become an important subject in academia as well as in industrial field in recent years due to their applications in diverse field including controlled drug delivery, biomedical applications, membrane science, sensors and actuators, oil recovery, colloid stabilization, etc. Efforts have been made to incorporate stimuli‐responsive biomolecules in synthetic polymers to develop pH responsive “smart” non‐biological hybrid macromolecules with high water solubility, enhanced biocompatibility, bio‐mimetic structure and properties. This review is focused on the recent advances in side‐chain amino acid‐based pH responsive polymers synthesis and potential application aspects of these macromolecular architectures in drug and gene delivery, and other fields. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41084.  相似文献   

11.
Jung Kwon  Sidi A.  Krzysztof   《Polymer》2009,50(19):4407-4423
This short review describes application of atom transfer radical polymerization (ATRP) in inverse miniemulsion and disulfide–thiol exchange to prepare well-defined biodegradable functional nanogels (ATRP-nanogels). Due to the formation of uniform network, the ATRP-nanogels have higher swelling ratios, better colloidal stability, and controlled degradation, as compared to nanogels prepared by conventional free-radical polymerization. Various water-soluble biomolecules such as anticancer drugs, carbohydrates, proteins, and star branched polymers were incorporated into ATRP-nanogels at high loading level, by in-situ physical loading or by in-situ chemical incorporation via covalent bonds. The nanogels crosslinked with disulfide or polyester linkages were degraded either in the presence of biocompatible reducing agents or by hydrolysis for controllable release of the encapsulated drugs. ATRP-nanogels contain bromine end groups that enable further chain extension and functionalization with biorelated molecules. They are also easily functionalized by copolymerization with functional monomers or use of functional ATRP initiator during synthesis. These functional nanogels have capability to be further chemically modified and bioconjugated with cell-targeting proteins, antibodies, and integrin-binding peptides to increase cellular uptake via clathrin-mediated endocytosis. These results suggest that such well-defined functional nanogels have great potential for targeted drug delivery applications.  相似文献   

12.
Dendrimers are a class of nano‐sized synthetic polymers with a well‐defined composition and regularly branched tree‐like structure produced by stepwise growth. The uniform size, globular shape and tunable surface chemistry make dendrimers versatile nanoscaffolds to encapsulate or stabilize various inorganic (metal, metal oxide, semiconductor) nanoparticles. In the past decade, research interest in dendrimer–inorganic nanoparticle hybrids has evolved from the development of interesting properties to the exploitation of advanced and useful functions. In particular, because gold nanoparticles with controlled morphology and optical properties have been demonstrated to be promising and versatile candidates for a diverse field of biomedical applications including sensing, in vitro and in vivo imaging, drug delivery, diagnostics and therapies, dendrimer–gold nanoparticle hybrids with biocompatibility have recently been intensively investigated for promising biomedical applications due to their controllable structures and dimensions, as well as their desirable internal and/or external functionalities. In this review, we discuss the recent progress regarding the development of functional dendrimer–gold nanoparticle hybrids for biomedical applications. The strategies for the fabrication of various structures of dendrimer–gold nanoparticle hybrids will first be summarized, followed by their biomedical applications in drug and gene delivery, photothermal therapy and combined therapies. © 2018 Society of Chemical Industry  相似文献   

13.
Since pioneer works by Iijima in 1991, carbon nanotubes (CNTs) have received a great deal of attention as confirmed by the increasing number of papers in the topic. Their unique and attractive properties have made them extensively demanded materials for a wide variety of technological applications, including their promising use as scaffolds in tissue engineering. In this review, we focus on the role that polymers (both natural and synthetic) play on the fabrication of three-dimensional (3D) CNT-based scaffolds for biomedical applications, with emphasis on biocompatible fabrication strategies such as freeze-casting, electrospinning and gel formation. These 3D matrices may be an interesting and alternative platform to circumvent structural limitations and toxicity problems of bare CNTs by the use of biocompatible dispersant polymers that allow the preparation of substrates better resembling native extracellular matrices. In any case, due to the relevance of CNT toxicity in this context, we also discuss significant works concerning cell and tissue responses to CNTs in dispersion, highlighting: (1) the asbestos-like behavior of CNTs, (2) surface functionalization as a tool to reduce CNT toxicity and (3) CNT biodistribution from the blood stream and posterior excretion. In this sense, literature revision has evidenced major toxicity issues related to: (a) the inherent insolubility and tendency to aggregate of pristine CNTs, (b) the rigidity of their structures that makes them resemble asbestos, (c) the presence of residual metal impurities or amorphous carbon from their synthesis, and (d) the depletion of culture media components due to the adsorptive properties of CNTs. Nevertheless, as expected for almost any material, we also illustrate how dose plays a key role in the biological responses induced. Overall, this critic review is expected to help research community working on polymers and CNTs, as well as other carbon nanomaterials such as graphene, to identify useful guidelines that help advancing the use of 3D CNT-based scaffolds in biomedical applications.  相似文献   

14.
Nanoparticles are efficient drug delivery vehicles for targeting specific organs as well as systemic therapy for a range of diseases, including cancer. However, their interaction with the immune system offers an intriguing challenge. Due to the unique physico-chemical properties, carbon nanotubes (CNTs) are considered as nanocarriers of considerable interest in cancer diagnosis and therapy. CNTs, as a promising nanomaterial, are capable of both detecting as well as delivering drugs or small therapeutic molecules to tumour cells. In this study, we coupled a recombinant fragment of human surfactant protein D (rfhSP-D) with carboxymethyl-cellulose (CMC) CNTs (CMC-CNT, 10–20 nm diameter) for augmenting their apoptotic and immunotherapeutic properties using two leukemic cell lines. The cell viability of AML14.3D10 or K562 cancer cell lines was reduced when cultured with CMC-mwCNT-coupled-rfhSP-D (CNT + rfhSP-D) at 24 h. Increased levels of caspase 3, 7 and cleaved caspase 9 in CNT + rfhSP-D treated AML14.3D10 and K562 cells suggested an involvement of an intrinsic pathway of apoptosis. CNT + rfhSP-D treated leukemic cells also showed higher mRNA expression of p53 and cell cycle inhibitors (p21 and p27). This suggested a likely reduction in cdc2-cyclin B1, causing G2/M cell cycle arrest and p53-dependent apoptosis in AML14.3D10 cells, while p53-independent mechanisms appeared to be in operation in K562 cells. We suggest that CNT + rfhSP-D has therapeutic potential in targeting leukemic cells, irrespective of their p53 status, and thus, it is worth setting up pre-clinical trials in animal models.  相似文献   

15.
Translocation and fate of multi-walled carbon nanotubes in vivo   总被引:1,自引:0,他引:1  
X. Deng  G. Jia  H. Sun  S. Yang  Y. Liu 《Carbon》2007,45(7):1419-1424
Carbon nanotube (CNT) mediated delivery system of drugs etc. has currently aroused a large interest. Because the delivery system will be ultimately introduced into the human body, the information about the in vivo biological behavior and consequences of CNTs becomes very important. Here, using [14C-taurine]-multi-walled CNTs (MWCNTs) as tracers, we show the biodistribution and translocation pathways of MWCNTs in mice by three different routes. After mice were exposed by intravenous injection, MWCNTs predominately accumulated in liver and retained for long time. Transmission electron micrographs clearly show the remarkable entrapment of MWCNTs in hepatic macrophages (Kupffer cells). The biological index examinations indicate low liver acute toxicity of MWCNTs. Some favorable aspects of MWCNTs being used as a drug nanovehicle are also discussed.  相似文献   

16.
Nonionic surfactants are capable of forming nano‐range vesicles upon self‐assembling in an aqueous medium. These vesicles are highly stable, low in toxicity, and cost‐effective. Owing to their ability to solubilize both hydrophilic and hydrophobic substances, they are of great interest for drug solubilization and delivery. This study describes the synthesis and characterization of two new nonionic surfactants and their screening for biocompatibility and drug loading potentials in nano‐scale niosomal vesicles. They were characterized through mass spectroscopy, 1HNMR, and FT‐IR. Their critical micelle concentration (CMC) was investigated using UV–vis spectrophotometry. The biocompatibility study was carried out through blood hemolysis and in vitro cytotoxicity assays. The surfactants have very low CMC values, are highly hemo‐compatible, and were nontoxic when tested against a cell culture. They were able to form nano‐range niosomal vesicles with large variation in their size. Both new surfactants were able to encapsulate increased amounts of the drug, in this case clarithromycin. The chemical nature of the drug remained intact in the niosomal vesicles. The results suggest that these nonionic surfactants could be promising drug delivery vehicles.  相似文献   

17.
Carbon nanotubes (CNTs) have emerged as promising drug delivery systems particularly for cancer therapy, due to their abilities to overcome some of the challenges faced by cancer treatment, namely non-specificity, poor permeability into tumour tissues, and poor stability of anticancer drugs. Encapsulation of anticancer agents inside CNTs provides protection from external deactivating agents. However, the open ends of the CNTs leave the encapsulated drugs exposed to the environment and eventually their uncontrolled release before reaching the desired target. In this study, we report the successful encapsulation of cisplatin, a FDA-approved chemotherapeutic drug, into multi-walled carbon nanotubes and the capping at the ends with functionalised gold nanoparticles to achieve a “carbon nanotube bottle” structure. In this proof-of-concept study, these caps did not prevent the encapsulation of drug in the inner space of CNTs; on the contrary, we achieved higher drug loading inside the nanotubes in comparison with data reported in literature. In addition, we demonstrated that encapsulated cisplatin could be delivered in living cells under physiological conditions to exert its pharmacological action.  相似文献   

18.
Novel carboxylic poly(arylene ether nitrile)s (CPEN) functionalized carbon nanotubes (CPEN‐f‐CNTs) were successfully prepared by a simple and effective solvent–thermal route. The CPEN‐f‐CNTs were subsequently used as the novel filler for preparation of high performance poly(arylene ether nitrile)s (PEN) nanocomposites. The SEM characterization of the PEN nanocomposites revealed that the CPEN‐f‐CNTs present better dispersion and interfacial compatibility in the PEN matrix, which was confirmed by the linear rheological analysis (Cole–Cole plots) as well. Consequently, the improved thermal stability (increased initial and maximum decomposition temperature) and enhanced mechanical properties (tensile strength and modulus) were obtained from nanocomposites using CPEN‐f‐CNTs. More importantly, the PEN/CPEN‐f‐CNTs nanocomposites not only show a high dielectric constant but also have low dielectric loss. For example, a dielectric constant of 39.7 and a dielectric loss of 0.076 were observed in the PEN composite with 5 wt% CPEN‐f‐CNTs loading at 100 Hz. Therefore, the flexible PEN/CPEN‐f‐CNTs nanocomposites with outstanding mechanical, thermal and dielectric properties will find wide application in the high energy density capacitors. POLYM. COMPOS., 37:2622–2631, 2016. © 2015 Society of Plastics Engineers  相似文献   

19.
ABSTRACT

Need for materials with high biocompatible properties have led to the development of porous silica nanoparticles. The structure of present nanostructures consists of a core and a silica shell or the silica core is coated with organic shell. The composite nanoparticles coated by organic shells with functional groups were considered to govern the covalent immobilization of biomolecules. The nanoparticles with unique chemical and physical properties may be useful as biosensors in living whole cells. The enhanced cellular drug delivery to cancer cell lines via nanoconjugates revealed that smart nanoparticles are an effective tool for transporting and delivering drugs.  相似文献   

20.
A hierarchical nanofiber (NF) structure featuring carbon nanotubes (CNTs) densely attached on the surface of NFs is presented. Nonwoven NF mats made of Nylon 6 (Nylon) were mass produced using the forcespinning® (FS) technology, followed by depositing functionalized CNTs (f‐CNTs) on the surface of NFs. Strong interfacial adhesion between CNTs and Nylon NFs was developed by the formation of covalent bonds. The morphology, structure, conductivity, and mechanical properties of the developed CNT‐Nylon NFs were analyzed. The hierarchical NFs have a 338% improvement in tensile strength without compromising its strain at break. The shielding effectiveness (SE) of electromagnetic interference (EMI) was recorded to be 30 dB. These promising characteristics endow novel flexible hierarchical NF mats for applications as EMI shielding materials or smart textiles to mention some. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42535.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号