首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hisashi Sugime 《Carbon》2010,48(8):2203-882
Millimeter-tall vertically-aligned carbon nanotubes (VA-CNTs) were grown from ethanol under ambient pressure by Co-catalyzed chemical vapor deposition (CVD), with systematic optimization of the CVD temperature and catalytic conditions using combinatorial catalyst libraries. We investigated the use of both aluminum oxide and silicon oxide as underlayers for the Co catalyst and found that VA-CNTs grew to millimeter heights in 15-30 min when the pyrolysis of ethanol was carried out at high temperatures (?850 °C) and long residence times (?10 s). Thick Co catalytic layers (?1.3 nm) produced (sub)millimeter-tall multi-walled VA-CNTs on both the aluminum oxide and silicon oxide underlayers. However, thin Co catalytic layers (0.62-1.0 nm) produced (sub)millimeter-tall VA-CNTs, which consisted mainly of single-walled CNTs, only on the aluminum oxide underlayers. Stripe patterns were found in the VA-CNTs near the substrate on both aluminum oxide and silicon oxide, indicating some instability prior to growth termination. The possible roles of aluminum oxide in growing millimeter-tall single-walled VA-CNTs were discussed.  相似文献   

2.
Han ZJ  Levchenko I  Yick S  Ostrikov KK 《Nanoscale》2011,3(11):4848-4853
Tailoring the density of random single-walled carbon nanotube (SWCNT) networks is of paramount importance for various applications, yet it remains a major challenge due to the insufficient catalyst activation in most growth processes. Here we report on a simple and effective method to maximise the number of active catalyst nanoparticles using catalytic chemical vapor deposition (CCVD). By modulating short pulses of acetylene into a methane-based CCVD growth process, the density of SWCNTs is dramatically increased by up to three orders of magnitude without increasing the catalyst density and degrading the nanotube quality. In the framework of a vapor-liquid-solid model, we attribute the enhanced growth to the high dissociation rate of acetylene at high temperatures at the nucleation stage, which can be effective in both supersaturating the larger catalyst nanoparticles and overcoming the nanotube nucleation energy barrier of the smaller catalyst nanoparticles. These results are highly relevant to numerous applications of random SWCNT networks in next-generation energy, sensing and biomedical devices.  相似文献   

3.
Albert G. Nasibulin  Hua Jiang 《Carbon》2005,43(11):2251-2257
Single-walled carbon nanotubes (CNTs) were synthesised at different conditions by a novel aerosol method based on the introduction of pre-formed iron catalyst particles into conditions leading to CNT formation. The results of statistical measurements of individual CNT dimensions based on high-resolution TEM images showed the effects of the residence time and temperature in the reactor. The ratio between catalyst particle and CNT diameters was close to 1.6 and independent of the experimental conditions, thus revealing an astonishing “universality” in the growth process. A proposed geometric model of heptagon defect formation, which initiates and maintains the CNT growth, allowed us to theoretically explain the phenomenon.  相似文献   

4.
E. Terrado 《Carbon》2009,47(8):1989-2001
The experimental parameters involved in the formation of the Ni catalytic nanoparticles on Si/SiO2 substrates that seed carbon nanotube growth were investigated. It was found that after deposition of a nickel film on the substrate, the temperature and time of the thermal and reduction catalyst pre-treatment steps are crucial variables for optimized nanoparticle distribution with different average diameters, depending on the initial film thickness. Densely-packed carbon nanotube forests with interesting potential applications have been grown from this nanoparticle distribution.  相似文献   

5.
We perform classical molecular dynamics simulations to investigate the mechanical compression effect on the thermal conductivity of the single-walled carbon nanotube (SWCNT) forest, in which SWCNTs are closely aligned and parallel with each other. We find that the thermal conductivity can be linearly enhanced by increasing compression before the buckling of SWCNT forests, but the thermal conductivity decreases quickly with further increasing compression after the forest is buckled. Our phonon mode analysis reveals that, before buckling, the smoothness of the inter-tube interface is maintained during compression, and the inter-tube van der Waals interaction is strengthened by the compression. Consequently, the twisting-like mode (good heat carrier) is well preserved and its group velocity is increased by increasing compression, resulting in the enhancement of the thermal conductivity. The buckling phenomenon changes the circular cross section of the SWCNT into ellipse, which causes effective roughness at the inter-tube interface for the twisting motion. As a result, in ellipse SWCNTs, the radial breathing mode (poor heat carrier) becomes the most favorable motion instead of the twisting-like mode and the group velocity of the twisting-like mode drops considerably, both of which lead to the quick decrease of the thermal conductivity with further increasing compression after buckling.  相似文献   

6.
This study is devoted to elucidate the interplay of catalyst thickness and growth conditions in the activation and selectivity of single-walled carbon nanotube growth using cobalt deposited on Si/SiO2 as a model system. In situ Raman studies reveal that thin catalyst layers require a higher pressure of carbon precursor to initiate nanotube growth. However, if the catalysts are pre-reduced, all catalyst thicknesses display the same low threshold pressure and a higher yield of single-walled carbon nanotubes. To explain these results, catalysts formed from a gradient of cobalt thickness are studied. Surface analyses show that during the catalyst preparation, catalyst atoms at the interface with silica form small and hard-to-reduce silicate nanoparticles while the catalyst in excess leads to the formation of large oxide particles. Weakly-reducing conditions of pretreatment or synthesis are sufficient to reduce the large oxide particles and to lead to the growth of large-diameter multi-walled carbon nanostructures. However, highly-reducing conditions are required to reduce the small silicate domains into small cobalt particles able to grow single-walled carbon nanotubes. These results show that reaction of the catalyst with the support to form more refractory compounds greatly impact the nucleation yield and the growth selectivity of single-walled carbon nanotubes.  相似文献   

7.
We show that the yield of single-walled carbon nanotubes (SWCNTs) grown with bimetallic catalysts is a strong function of their atomic-scale composition. A series of compositionally-tuned NixFe1?x bimetallic catalysts with a constant mean diameter of 2.0 nm are used to catalyze the growth of nanotubes via a floating catalyst method. Increasing the Fe content in the catalysts is found to lower the fraction of SWCNTs in the collected as-grown product. Based on a simple surface-to-volume model, these results are explained by the higher carbon solubility of Fe compared to Ni which results in a larger amount of carbon precipitation and the formation of multi-walled tubes when the nanotubes are nucleated from catalysts with high Fe content. Overall, our study demonstrates that the size and composition of bimetallic catalysts must be precisely controlled to obtain high yields of SWCNTs for large-scale production.  相似文献   

8.
A simple model for the gas-phase synthesis of carbon nanotubes on iron catalyst particles has been developed. It includes a growth model for the catalyst particles and describes nanotube growth processes through carbon monoxide disproportionation and hydrogenation. Models for particle-particle interactions and sintering are also included. When carbon arrives at a catalyst particle it can either dissolve in the particle until a saturation limit is reached, or form a graphene layer on the particle, or go on to form a nanotube. Two models for incipient nanotube growth are considered. The first allows nanotubes to form once a catalyst particle reaches the saturation condition. The second only allows nanotubes to form on the collision of two saturated particles. The particle system is solved using a multivariate stochastic solver coupled to the gas-phase iron chemistry using an operator splitting algorithm. Comparison with experimental data gives a good prediction of the nanotube length, and reasonable values of catalyst particle diameter and nanotube diameter. A parametric study is presented in which the carbon monoxide reaction rate constants are varied, as is the fraction of carbon allowed to form nanotubes relative to surface layers. The assumptions of the coagulation and sintering models are also discussed.  相似文献   

9.
We present a simple approach to estimate the absolute purity of carbon nanotube (CNT) forests based on outer-specific surface area (SSA). The outer-SSA and absolute purity for diverse forms of CNT forests to increased levels of carbonaceous impurities showed similar behavior and revealed a method to distinguish between CNTs and carbonaceous impurities. Furthermore, these experiments showed a direct proportionality between the outer-SSA and absolute purity which led to a simple analytical model to use outer-SSA as a gauge for absolute purity analysis.  相似文献   

10.
In this work, high-aligned single-walled carbon nanotube (SWCNT) forest have been grown using a high-density plasma chemical vapor deposition technique (at room temperature) and patterned into micro-structures by photolithographic techniques, that are commonly used for silicon integrated circuit fabrication. The SWCNTs were obtained using pure methane plasma and iron as precursor material (seed). For the growth carbon SWCNT forest the process pressure was 15 mTorr, the RF power was 250 W and the total time of the deposition process was 3 h. The micropatterning processes of the SWCNT forest included conventional photolithography and magnetron sputtering for growing an iron layer (precursor material). In this situation, the iron layer is patterned and high-aligned SWCNTs are grown in the where iron is present, and DLC is formed in the regions where the iron precursor is not present. The results can be proven by Scanning Electronic Microscopy and Raman Spectroscopy. Thus, it is possible to fabricate SWCNT forest-based electronic and optoelectronic devices.  相似文献   

11.
We present the wall number control of carbon nanotube (CNT) forests grown on metal catalyst films in a water-assisted chemical vapor deposition (CVD) by measuring the sheet resistances of metal catalyst films. Catalyst film thicknesses and thickness variations are monitored using a 2-point-based electrical characterization methodology. The electrical characterization and high-resolution transmission electron microscopy analysis showed that single-, double-, and triple-walled CNT forests were grown on iron (Fe) catalyst films with mean sheet resistances of 646.63, 75.40, and 27.84 MΩ/sq, respectively. The average wall number and outer diameter of CNT forests were found to linearly depend on the logarithm of the mean sheet resistances of Fe catalyst films.  相似文献   

12.
13.
Wu B  Geng D  Liu Y 《Nanoscale》2011,3(5):2074-2085
The nature of the mixed electronic type metallic (M-) and semiconducting (S-) single-walled carbon nanotubes (SWNTs) synthesized by current methods has posed a key challenge for the development of high performance SWNT-based electronic devices. The precise measurements of M- to S-SWNT ratio in as-grown or separated samples are of paramount importance for the controlled synthesis, separation and the realization of various applications. The objective of this review is to provide comprehensive overview of the progress achieved so far for measuring the M/S ratio both on individual and collective levels of SWNT states. We begin with a brief introduction of SWNT structures/properties and discussion of the problems and difficulties associated with precise measurement of the M/S ratio, and then introduce the principles for obtaining distinguished signals from M-and S-SWNTs. These techniques are classified into different groups based either on the single/ensemble detection of SWNT samples or on the principles of techniques themselves. We then present the M/S ratio evaluation results of these methods, with emphasis on scanning probe microscopy (SPM)-based detection techniques. Finally, the prospects of precise and large-scale measurement of M/S ratio in achieving controlled synthesis and understanding growth mechanism of SWNTs are discussed.  相似文献   

14.
The electrical and textural properties of single-walled carbon nanotube buckypapers were tunned through chemical functionalization processes. Single-walled carbon nanotubes (SWCNTs) were covalently functionalized with three different chemical groups: Carboxylic acids (-COOH), benzylamine (-Ph-CH2-NH2), and perfluorooctylaniline (-Ph-(CF2)7-CF3). Functionalized SWCNTs were dispersed in water or dimethylformamide (DMF) by sonication treatments without the addition of surfactants or polymers. Carbon nanotube sheets (buckypapers) were prepared by vacuum filtration of the functionalized SWCNT dispersions. The electrical conductivity, textural properties, and processability of the functionalized buckypapers were studied in terms of SWCNT purity, functionalization, and assembling conditions. Carboxylated buckypapers demonstrated very low specific surface areas (< 1 m2/g) and roughness factor (Ra = 14 nm), while aminated and fluorinated buckypapers exhibited roughness factors of around 70 nm and specific surface areas of 160-180 m2/g. Electrical conductivity for carboxylated buckypapers was higher than for as-grown SWCNTs, but for aminated and fluorinated SWCNTs it was lower than for as-grown SWCNTs. This could be interpreted as a chemical inhibition of metallic SWCNTs due to the specificity of the diazonium salts reaction used to prepare the aminated and fluorinated SWCNTs. The utilization of high purity as-grown SWCNTs positively influenced the mechanical characteristics and the electrical conductivity of functionalized buckypapers.  相似文献   

15.
Carbon nanotubes (CNTs) were grown directly on substrates by alcohol catalytic chemical vapor deposition using a Co-Mo binary catalyst. Optimum catalytic and reaction conditions were investigated using a combinatorial catalyst library. High catalytic activity areas on the substrate were identified by mapping the CNT yield against the orthogonal gradient thickness profiles of Co and Mo. The location of these areas shifted with changes in reaction temperature, ethanol pressure and ethanol flow rate. Vertically aligned single-walled CNT (SWCNT) forests grew in several areas to a maximum height of ca. 30 μm in 10 min. A pure Co catalyst yielded a vertically aligned SWCNT forest with a bimodal diameter distribution. The effects of Mo on the formation of catalyst nanoparticles and on the diameter distribution of SWCNTs are discussed and Mo as thin as a monolayer or thinner was found to suppress the broadening of SWCNT diameter distributions.  相似文献   

16.
Anisotropic electrical conduction measurements have been carried out for thin films of vertically-aligned single-walled carbon nanotubes (VA-SWCNTs) grown by an alcohol catalytic CVD process. Combined with controlled synthesis and structure characterization by optical spectroscopy, the influence of the aligned structure on the electrical conduction has been identified. The out-of-plane conductivity of the films was measured to be about 0.56 S/mm, independently of the film thickness. On the other hand, the in-plane conductivity was found to be more than an order of magnitude smaller, which gives rise to highly anisotropic electrical conduction, reflecting the high degree of alignment in the VA-SWCNT films. The in-plane conductivity decreases with increasing film thickness, in contrast to the film of random SWCNT networks, which exhibit thickness-independent in-plane resistance. The thickness-dependent in-plane conductivity can be expounded by a growth model of vertically aligned SWCNT films in which a thin layer of nanotube networks form on top of films at the initial stage of the growth. Such electrical anisotropy of VA-SWCNT films can be useful in miniaturized sensing devices.  相似文献   

17.
The conduction responses of semiconducting single-walled carbon nanotube (SWCNT) films irradiated by 6 and 15 MV X-rays were evaluated. Results indicate that the average resistance–dose rate relations of the SWCNT network are quasi-linear and can be used for dosimetry measurements in medical radiation applications. The dynamic responses exhibit fluctuations which reveal an intrinsic feature of SWCNT networks due to the large number of interconnections between individual SWCNTs.  相似文献   

18.
19.
We present a customized technique to spin fiber from unique single-wall carbon nanotube (SWCNT) films utilizing a motorized pulling/twisting stage. The manufactured SWCNT fibers’ diameter ranged from 30 to 130 μm. Electrical measurements show fusing current of 1–200 mA – depending on the spun fiber’s diameter – which is close to the values known for copper wires with similar diameter. These results reveal that the fiber spinning process could retain most of the advantageous electrical properties of original nanotubes, and also indicate a good possibility for using these low cost, sustainable SWCNT fibers in electrical wiring applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号