首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large-area mono- and bilayer graphene films were synthesized on Cu foil (∼1 in.2) in about 1 min by a simple ethanol-chemical vapor deposition (CVD) technique. Raman spectroscopy and high resolution transmission electron microscopy revealed the synthesized graphene films to have polycrystalline structures with 2–5 nm individual crystallite size which is a function of temperature up to 1000 °C. X-ray photoelectron spectroscopy investigations showed about 3 at.% carboxylic (COOH) functional groups were formed during growth. The field-effect transistor devices fabricated using polycrystalline graphene as conducting channel (Lc = 10 μm; Wc = 50 μm) demonstrated a p-type semiconducting behavior with high drive current and Dirac point at ∼35 V. This simple one-step method of growing large area polycrystalline graphene films with semiconductor properties and easily functionalizable groups should assist in the realization of potential of polycrystalline graphene for nanoelectronics, sensors and energy storage devices.  相似文献   

2.
We report the synthesis of large-area graphene films on Mo foils by chemical vapor deposition. X-ray diffraction indicates that the dissolution and segregation process governs the growth of graphene on Mo foils. Among all processing parameters investigated, the cooling rate is the key one to precisely control the thickness of graphene film. By optimizing the cooling rate between 1.5 and 10 °C/s, we managed to achieve graphene films ranging from mono- to tri-layer. Their uniformity and thickness were confirmed by Raman spectroscopy and optical measurements. The carrier mobility of films reaches as high as 193 cm2 V?1 s?1. Our experiments show that the Mo substrate has the similar simplicity and large tolerance to processing conditions as Cu.  相似文献   

3.
《Ceramics International》2017,43(17):15010-15017
During the last decade, fabrication of high-quality graphene films by chemical vapor deposition (CVD) for nanoelectronics and optoelectronic applications has attracted increasing attention. However, processing of large-area monolayer and defect-free graphene films is still challenging. In this work, we have studied the effect of processing conditions on the self-limited growth of graphene monolayers on copper foils during low pressure CVD both experimentally and theoretically based on thermokinetics and kinetics of Langmuir adsorption. The effect of copper pre-treatment, growth time, and carbon potential of the atmosphere (indicated by the methane-to-hydrogen gas ratio, r) on the quality of graphene nanosheets (number of layers, surface roughness and the lateral size) were studied. Microscopic studies show that careful pre-treatment of the copper foil by electropolishing provides a suitable condition for the self-limited growth of graphene with minimum surface roughness and defects. Raman spectroscopy and atomic force microscopy determine that the number of graphene sheets decreases with increasing the carbon potential while smother surfaces are attained. Large-area monolayer graphene films are obtained at relatively high carbon potential (r=1) and controlled growth time (10 min) at 1000 °C. Measurement of the electrical response of the prepared monolayer graphene films on SiO2 (300 nm)/Si substrates in a field effect transistor (FET) device shows a high mobility of 2780 cm2 V−1 s−1. Interestingly, the device exhibits p-type semiconducting behavior with the Dirac point at a gate voltage of 25 V. The finding show a great promise for graphene-based FET devices for future nanoelectronics.  相似文献   

4.
A new technique for the synthesis of large sheets (>10 cm2) of multi-layered graphene is presented. The condensation onto a heated surface (≈650 °C) of fumes from the thermal decomposition of asphalt in a ceramic crucible produces carbon films with a metallic sheen. Heating was done by a Fisher burner (natural gas/air) flame and the crucible was covered but exposed to laboratory atmosphere. These films were determined to be multi-layered graphene by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy (XPS), Raman and infrared spectroscopy and X-ray diffraction. XPS indicates that the films are primarily sp2 hybridized carbon with small amounts of sp3 C–H and C–O or C–N functionalities. Based on the D band shift (1593 cm−1) and the ratio of D band to G band (1354 cm−1) of 0.93, the Raman spectrum also indicates that the material is sp2 C with some nanocrystalline features. The infrared spectrum exhibits A1U (868 cm−1) and E1U (1599 cm−1) stretching of the intralayer bonds of graphene. This form of chemical vapor deposition may be a scalable to give much larger surface areas. Furthermore, the process does not require metal substrates. Deposition onto silica nanosprings and diatomites is demonstrated.  相似文献   

5.
The optimum growth parameters of our 5 kW microwave plasma CVD reactor were obtained using CH4/H2/O2 plasma and high quality transparent films can be produced reproducibly. Among the films prepared in this system, the film of best quality has very smooth crystalline facets free of second nucleation and the full width at half maximum (FWHM) of the diamond Raman peak is 2.2 cm−1, as narrow as that of IIa natural diamond. For this study, diamond films were grown on silicon substrates with low (104–105 cm−2) and high nucleation densities (>1010 cm−2), respectively. From the same growth run, a highly 〈110〉 textured 300 μm thick white diamond film with a growth rate of 2.4 μm/h was obtained from high nucleation densities (>1010 cm−2), and a white diamond film of 370 μm in thickness with a higher growth rate of 3 μm/h was obtained from low nucleation densities (5×104–105 cm−2) too. The effect of nucleation density on film quality, growth rate, texture and morphology was studied and the mechanism was discussed. Our results suggest that under suitable growth conditions, nucleation density has little effect on film quality and low nucleation density results in higher growth rate than high nucleation density due to less intense grain growth competition.  相似文献   

6.
We report on the growth of nanocrystalline graphene on c-plane Al2O3 substrates by molecular beam epitaxy. Graphene films are grown by carbon evaporation from a highly-oriented-pyrolytic-graphite filament and cover the entire surface of two-inch wafers. The structural quality of the material (degree of crystallinity) is investigated in detail by Raman spectroscopy and is revealed to be strongly dependent on the growth temperature and time. We observe that adjacent graphene layers grow parallel to each other and to the substrate surface with domains sizes larger than 30 nm. Transmission electron microscopy confirms the planarity of the nanocrystalline films and X-ray photoelectron spectroscopy proves the predominant sp2 nature of the grown layers. Transport measurements reveal that the layers are p-type doped with mobility values up to 140 cm2/Vs at room temperature. The present results demonstrate the potential of molecular beam epitaxy as a technique for realizing the controlled growth of graphene (mono- and few-layer) over large areas directly on an insulating substrate.  相似文献   

7.
Chemical vapor deposition in a hot wall reactor is the most common technique for the production of large area single layer graphene. However, growth in this type of reactors is time consuming and the results are limited by the surface quality of the widely used catalytic metal foils as growth substrates. In this work we demonstrate the use of millimeter-thick Cu and Pt substrates for graphene growth via inductive magnetic heating, which allows for fast temperature ramps during heat up and cooling. Based on a detailed growth study, a two-step growth process resulting in continuous monolayer graphene films of high crystal quality with grain size of larger than 90 μm is established. An electrochemical transfer process is used to separate the graphene film from the metallic substrate, yielding excellent results in terms of defect density, doping and residual contamination. Back-gated graphene field-effect transistors fabricated on Si/SiO2 structures exhibit a high reproducibility with a peak mobility higher than 4000 cm2/Vs. The combination of the highly time efficient graphene growth and electrochemical transfer together with the reusability of the growth substrates and the possibility of applying novel surface pretreatments pave the way for the use of high quality substrates in industrial applications.  相似文献   

8.
In this paper we report on a surface treatment to seed substrates for the promotion of diamond nucleation. This surface treatment consists of an ultrasonic abrasion process using poly-disperse slurry composed of a mixture of small diamond particles (<0.25 μm) and larger particles (>3 μm) which may consist of diamond, alumina, titanium, etc. Whereas ultrasonic abrasion with a mono-disperse diamond slurry results in a diamond nucleation density of ∼2–3×108 particles/cm2, treatment with poly-disperse slurries results in diamond nucleation density of values up to ∼5×1010 particles/cm2. This effect was found to display a similar effectiveness on a variety of substrates such as silicon, sapphire, quartz, etc. The enhancement in diamond nucleation is interpreted by a ‘hammering’ effect whereby the larger particles insert very small diamond debris onto the treated surface, thus increasing the density of nuclei onto which diamond growth takes place during the chemical vapor deposition process. By increasing the nucleation density to values of ∼5×1010 particles/cm2, continuous diamond films of thickness of less than ∼100 nm were grown after only 5 min of deposition. The roughness of continuous diamond films grown on substrates treated at optimum conditions obtains values of 15–20 nm. The effect of ultrasonic treatment on silicon substrates and the deposited films was investigated by atomic force microscopy (AFM), high-resolution scanning electron microscopy (HR-SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.  相似文献   

9.
We report on a highly efficient growth of graphene using dehydrogenation of acetylene by an oxidative reaction with carbon dioxide. In few seconds, large-area of copper foil used as catalyst of the reaction is fully covered with graphene. The yield of the reaction can be as high as 0.1%. This method allows the growth of multilayered graphene with misoriented layer stacking. This could be the result of functional (carboxylic, hydroxyl, epoxy) groups, taking the role of catalytic centers, attached to the surface of the layers. The thickness of graphene is controlled by the growth duration. The presence of the functional groups is useful for further chemical manipulations but they have limited impact on the electrical and optical properties of the graphene films. The as-synthesized bilayer graphene has a mobility of positive charge carriers of 2300 cm2 V−1 s−1 at room temperature. The high quality of the oxidative dehydrogenation product makes this process an attractive alternative to produce high quality graphene by chemical vapor deposition.  相似文献   

10.
We report on the fabrication of completely uniform monolayer graphene on a metal thin film over a 150 mm Si substrate at a low temperature of 600 °C by inductively coupled plasma-enhanced chemical vapor deposition (ICPCVD). Through novel use of bimetallic catalyst such as CuNi and AuNi alloys we were able to control catalytic reaction at the metal surface and grow complete monolayer graphene with a Ni content less than 20 at.%. We also found that the 2D/G intensity ratio in the Raman spectra was almost invariant with growth time and the C 1s peak in the XPS spectra was observed only at the metal surface. This implies that monolayer graphene was possibly grown on these Ni-doped copper and gold catalysts by a self-limiting surface reaction under our CVD condition. From DFT calculations, it was shown that the catalytic activity of normally inactive Cu and Au could be enhanced through the addition of Ni atoms at surface sites, providing graphene growth at lower temperatures than pure Cu or Au. The carrier mobility of graphene films grown on these CuNi and AuNi alloy catalyst was measured to be over 9000 cm2 V−1 s−1 at room temperature, which is comparable to that of CVD graphene film grown on Cu foil. Therefore, we suggest an efficient way in growing a complete monolayer graphene on thin films at low temperatures, which could be a key issue in the application of graphene devices.  相似文献   

11.
Cu foils of 2 × 2 cm2 have been implanted with 70 keV C ions to nominal fluences of (2–10) × 1015 cm−2 at room temperature (RT) and subsequently annealed at 900–1100 °C for 15 min, before being cooled to RT to form graphene layers on the Cu surfaces. Analyses with Raman spectroscopy and atomic force microscopy demonstrate that a continuous film of bi-layer graphene (BG) is produced for implant fluences as low as 2 × 1015 cm−2, much less than the carbon content of the BG films. This suggests that the implanted carbon facilitates the nucleation and growth of graphene, with additional carbon supplied by the Cu substrate (0.515 ppm carbon content). No graphene was observed on unimplanted Cu foils subjected to the same thermal treatment. This implantation method provides a novel technique for the selective growth of graphene on Cu surfaces.  相似文献   

12.
The tetracyanoethylene oxide (TCNEO) functionalization of chemical vapor deposition grown large area graphene and graphite was performed using reaction of TCNEO with carbon surface in chlorobenzene. The successful functionalization has been confirmed by Raman and Auger spectroscopy, and by numerical modeling of the structure and vibrational modes of TCNEO-functionalized graphene. Raman spectra of TCNEO-functionalized graphene and graphite show several groups of lines corresponding to vibrations of attached carbonyl ylide. One of key signatures of TCNEO attachment is the high intensity Raman band at ∼1450 cm−1, which represents the C–CC in plane vibrations in functionalization-distorted graphene. Raman spectra indicate the existence of central (pristine) attachment of TCNEO to graphene surface.  相似文献   

13.
The intercalation of an oxide barrier between graphene and its metallic substrate for chemical vapor deposition is a contamination-free alternative to the transfer of graphene to dielectric supports, usually needed for the realization of electronic devices. Low-cost processes, especially at atmospheric pressure, are desirable but whether they are achievable remains an open question. Combining complementary microscopic analysis, providing structural, electronic, vibrational, and chemical information, we demonstrate the spontaneous reactive intercalation of 1.5 nm-thick oxide ribbons between graphene and an iridium substrate, at atmospheric pressure and room temperature. We discover that oxygen-containing molecules needed for forming the ribbons are supplied through the graphene wrinkles, which act as tunnels for the efficient diffusion of molecules entering their free end. The intercalated oxide ribbons are found to modify the graphene–support interaction, leading to the formation of quasi-free-standing high quality graphene whose charge density is modulated in few 10–100 nm-wide ribbons by a few 1012 cm−2, where the inelastic optical response is changed, due to a softening of vibrational modes – shifts of Raman G and 2D bands by 6 and 10 cm−1, respectively.  相似文献   

14.
The mechanisms determining the growth of high-quality monolayer and bilayer graphene on Cu using chemical vapor deposition (CVD) were investigated. It is shown that graphene growth on Cu is not only determined by the process parameters during growth, but also substantially influenced by the quality of Cu substrate and how the Cu substrate is pretreated. It is found that the micro-topography of the Cu surface strongly affects the uniformity of grown graphene while the purity of the Cu film determines the number of synthesized graphene layers at low pressure conditions. On the other hand, a minimum partial pressure of hydrocarbon is required for graphene to cover the Cu surface during graphene growth. The optimized bilayer graphene exhibits a maximum hole (electron) mobility of 5500 cm2V–1s–1 (3900 cm2V–1s–1). A new growth mode resulting in tetragonal shaped graphene domain, which is different from the known lobe structure (for monolayer) or hexagonal (for few layer) mode, is also discovered under our experimental conditions. Furthermore, high resolution transmission electron microscopy has revealed the non-ideal nature of CVD graphene structure for the first time, indicating an important cause of electron/hole mobility degradation that is typically observed in CVD graphene. This observation could be crucial for optimization of the CVD process to further improve the quality of graphene.  相似文献   

15.
In this work, inkjet printing methods are used to create graphene field effect transistors with mobilities up to 3000 cm2 V−1 s−1. A commercially-available chromium-based ink is used to define the device channel by inhibiting chemical vapour deposition of graphene in defined regions on a copper catalyst. We report on the patterned graphene growth using optical and electronic microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. Silver nanoparticle ink is used to create electrical contacts to the defined graphene regions. The resulting devices were characterised by electrical transport measurements at room temperature. As a result we are able to fabricate high-performance graphene field effect transistors entirely defined by a commercial inkjet printer with channel lengths of 50 μm.  相似文献   

16.
《Diamond and Related Materials》2000,9(9-10):1660-1663
Nucleation and growth of diamond films on aluminum nitride (ALN) coatings were investigated by scanning electron microscopy, Raman spectroscopy and scratch test. ALN films were grown in a magnetron sputtering deposition. The substrates were Si(111) and tungsten carbide (WC). Chemical vapor deposition (CVD) diamond films were deposited on ALN films by hot filament CVD. The nucleation density of diamond on ALN films was found to be approximately 105 cm−2, whereas over 1010 cm−2 after negative bias pre-treatment for 35 min was −320 V, and 250 mA. The experimental studies have shown that the stresses were greatly minimized between diamond overlay and ALN films as compared with WC substrate. The results obtained have also confirmed that the ALN, as buffer layers, can notably enhance the adhesion force of diamond films on the WC.  相似文献   

17.
Quasi-free-standing monolayer and bilayer graphene is grown on homoepitaxial layers of 4H-SiC. The SiC epilayers themselves are grown on the Si-face of nominally on-axis semi-insulating substrates using a conventional SiC hot-wall chemical vapor deposition reactor. The epilayers were confirmed to consist entirely of the 4H polytype by low temperature photoluminescence. The doping of the SiC epilayers may be modified allowing for graphene to be grown on a conducing substrate. Graphene growth was performed via thermal decomposition of the surface of the SiC epilayers under Si background pressure in order to achieve control on thickness uniformity over large area. Monolayer and bilayer samples were prepared through the conversion of a carbon buffer layer and monolayer graphene respectively using hydrogen intercalation process. Micro-Raman and reflectance mappings confirmed predominantly quasi-free-standing monolayer and bilayer graphene on samples grown under optimized growth conditions. Measurements of the Hall properties of Van der Pauw structures fabricated on these layers show high charge carrier mobility (>2000 cm2/Vs) and low carrier density (<0.9 × 1013 cm−2) in quasi-free-standing bilayer samples relative to monolayer samples. Also, bilayers on homoepitaxial layers are found to be superior in quality compared to bilayers grown directly on SI substrates.  相似文献   

18.
Plasma-assisted thermal chemical vapor deposition (CVD) was carried out to synthesize high-quality graphene film at a low temperature of 600°C. Monolayer graphene films were thus synthesized on Cu foil using various ratios of hydrogen and methane in a gaseous mixture. The in situ plasma emission spectrum was measured to elucidate the mechanism of graphene growth in a plasma-assisted thermal CVD system. According to this process, a distance must be maintained between the plasma initial stage and the deposition stage to allow the plasma to diffuse to the substrate. Raman spectra revealed that a higher hydrogen concentration promoted the synthesis of a high-quality graphene film. The results demonstrate that plasma-assisted thermal CVD is a low-cost and effective way to synthesis high-quality graphene films at low temperature for graphene-based applications.  相似文献   

19.
An approximate growth model was employed to predict the time required to grow a graphene film by chemical vapor deposition (CVD). Monolayer graphene films were synthesized on Cu foil at various hydrogen flow rates from 10 to 50 sccm. The sheet resistance of the graphene film was 310Ω/□ and the optical transmittance was 97.7%. The Raman intensity ratio of the G-peak to the 2D peak of the graphene film was as high as ~4 when the hydrogen flow rate was 30 sccm. The fitting curve obtained by the deviation equation of growth model closely matches the data. We believe that under the same conditions and with the same setup, the presented growth model can help manufacturers and academics to predict graphene growth time more accurately.  相似文献   

20.
Diamond thin films were deposited on silicon in gas mixtures of methane and hydrogen with different methane concentrations ranging from 1% to 100% using microwave plasma assisted chemical vapor deposition. Both Raman spectroscopy and synchrotron near edge extended X-ray absorption fine structure spectroscopy (NEXAFS) were used to characterize the electronic structure and chemical bonding of the synthesized films. The NEXAFS spectra of the nanocrystalline diamond (NCD) films exhibit clear spectral characteristics of diamond. Close observation reveals that the films (10% CH4 or above) exhibit a slightly broadened exciton transition with a 0.25 eV blue shift. With the increase in methane concentration, the growth rate, the surface smoothness, and the sp2 carbon concentration of the films increase while the grain size decreases. Well-faceted microcrystalline diamond films were synthesized with a methane concentration of 5% or lower, while NCD films were formed with a methane concentration of 10% or higher. Diamond thin films with low surface roughness and fine nanocrystalline structure have been synthesized with high methane concentrations (50% or above). It has been observed that the diamond growth rate increases with methane concentration. The growth rate at 100% methane concentration is approximately 10 times higher than at 1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号