首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A computational fluid dynamic (CFD) study has been carried out for the fuel reactor for a new type of combustion technology called chemical-looping combustion (CLC). CLC involves combustion of fuels by heterogeneous chemical reactions with an oxygen carrier, usually a granular metal oxide, exchanged between two reactors. There have been extensive experimental studies on CLC, however CFD simulations of this concept are quite limited. In the present paper we have developed a CFD model for the fuel reactor of a chemical-looping combustor described in the literature, which utilized a Fe-based carrier (ilmenite) and coal. An Eulerian multiphase continuum model was used to describe both the gas and solid phases, with detailed sub-models to account for fluid–particle and particle–particle interaction forces. Global reaction models of fuel and carrier chemistry were utilized. The transient results obtained from the simulations were compared with detailed experimental time-varying outlet species concentrations (Leion et al., 2008) and provided a reasonable match with the reported experimental data.  相似文献   

2.
In this work, the hydrodynamics and mass transfer in a gas–liquid dual turbine stirred tank reactor are investigated using multiphase computational fluid dynamics coupled with population balance method (CFD–PBM). A steady state method of multiple frame of reference (MFR) approach is used to model the impeller and tank regions. The population balance for bubbles is considered using both homogeneous and inhomogeneous polydispersed flow (MUSIG) equations to account for bubble size distribution due to breakup and coalescence of bubbles. The gas–liquid mass transfer is implemented simultaneously along with the hydrodynamic simulation and the mass transfer coefficient is obtained theoretically using the equation based on the various approaches like penetration theory, slip velocity, eddy cell model and rigid based model. The CFD model predictions of local hydrodynamic parameters such as gas holdup, Sauter mean bubble diameter and interfacial area as well as averaged quantities of hydrodynamic and mass transfer parameters for different mass transfer theoretical models are compared with the reported experimental data of [Alves et al., 2002a] and [Alves et al., 2002b] . The predicted hydrodynamic and mass transfer parameters are in reasonable agreement with the experimental data.  相似文献   

3.
Several studies have shown a strong relationship between morphology and agitation ( [Cui et al., 1997] and [Berzins et al., 2001] ). The shear stress distribution and mass transfer are the important parameters which can improve the performance of bioreactor. In this work, a mathematical model using computational fluid dynamics (CFD) techniques is used to study the gas–liquid dispersion in an airlift reactor. Multiple rotating frame (MRF) technique is used to approximate the movement of the impeller in the stationary reactor. Population balance modeling (PBM) is used to describe the dynamics of the time and space variation of bubble sizes in the reactor. The PBM equation is solved using an approximate method known as the class method (CM) and the bubble sizes are approximated through a discrete number of size ‘bins’, including transport, and different bubble phenomena. These equations of the CM are then written as scalar transport equations and added to the multiphase fluid mechanical equations describing the dynamics of the flow. All these equations are solved using control volume formulation through the use of an open-source CFD package OpenFOAM. The model is used to analyze an existing geometry of an airlift bioreactor and validate the modification on the initial design. The new design of airlift gives a clear performance by the increase of the global and local mass transfer and the decrease of the shear stress.  相似文献   

4.
Flow behavior of gas and particles is predicted by a filtered two-fluid model by taking into the effect of particle clustering on the interphase momentum-transfer account. The filtered gas–solid two-fluid model is proposed on the basis of the kinetic theory of granular flow. The subgrid closures for the solid pressure and drag coefficient (Andrews et al., 2005) and the solid viscosity (Riber et al., 2009) are used in the filtered two-fluid model. The model predicts the heterogeneous particle flow structure, and the distributions of gas and particle velocities and turbulent intensities. Simulated solids concentration and mass fluxes are in agreement with experimental data. Predicted effective solid phase viscosity and pressure increase with the increase of model constant cg and cs. At the low concentration of particles, simulations indicate that the anisotropy is obvious in the riser. Simulations show the subgrid closures for viscosity of gas phase and solid phase led to a qualitative change in the simulation results.  相似文献   

5.
The use of ultraviolet (UV) disinfection in water treatment is governed by several factors, including flow field, fluence rate field, and microbial inactivation kinetics. In this study, a computational fluid dynamics (CFD) model was developed for UV disinfection in a closed-conduit reactor where an improved low-Reynolds number kε model was used to calculate flow field and a modified P-1 model was employed to obtain the fluence rate field. The Chick–Watson model was adopted to characterize the inactivation of microorganisms. Commercial CFD software FLUENT 6.3 was employed to solve the governing equations. The predicted flow field agreed well with experimental data obtained by digital particle image velocimetry (DPIV) (Liu et al., 2007) in terms of velocity field. The proposed CFD model was also evaluated by comparing current predictions to bioassay test data, and reasonable agreement was obtained in terms of effluent log inactivation. The impact of wall reflection of the light on the fluence rate field and the viable microorganism concentration field was investigated. The effect of wall reflection of the light on effluent log inactivation was also investigated under different water qualities and lamp power conditions. The results showed that at higher inactivation levels, the effect of wall reflection was more influential.  相似文献   

6.
A kinetic study of the methanol steam reforming reaction was performed over a commercial CuO/ZnO/Al2O3 catalyst (Süd-Chemie, G66 MR), in the temperature range of 200–300 °C. The reactions considered in this work were methanol steam reforming (MSR) and reverse water gas shift (rWGS). Several MSR kinetic rate models developed by different authors were compared and the one was determined that best fitted the experimental data. A kinetic Langmuir–Hinshelwood model was proposed based on the work by Peppley et al. (1999a) . The kinetic expressions that presented the best fit were used to simulate the packed bed reactor with a one-dimensional model. A good agreement between the mathematical model and the experimental data was observed.  相似文献   

7.
The one-equation SGS LES model has shown promise in revealing flow details as compared to the Dynamic model, with the additional benefit of providing information on the modelled SGS-turbulent kinetic energy (Niceno et al., 2008). This information on SGS-turbulent kinetic energy (SGS-TKE) offers the possibility to more accurately model the physical phenomena at the sub-grid level, especially the modelling of the SGS-turbulent dispersion force (SGS-TDF). The use of SGS-TDF force has the potential to account for the dispersion of particles by sub-grid scale eddies in an LES framework, and through its use, one expects to overcome the conceptual drawback faced by Eulerian–Eulerian LES models. But, no work has ever been carried out to study this aspect. Niceno et al. (2008) could not study the impact of SGS-TDF effect as their grid size was comparable to the dispersed bubble diameter. A proper extension of research ahead would be to quantify the effect of sub-grid scale turbulent dispersion force for different particle systems, where the particle sizes would be smaller than filter-size. This work attempts to apply the concept developed by Lopez de Bertodano (1991) to approximate the turbulent diffusion of the particles by the sub-grid scale liquid eddies. This numerical experimentation has been done for a gas–liquid bubble column system (Tabib et al., 2008) and a liquid–liquid solvent extraction pump-mixer system ( [Tabib et al., 2010] and [28] ). In liquid–liquid extraction system, the organic droplet size is around 0.5 mm, and in bubble columns, the bubble size is around 3–5 mm. The simulations were run with mesh size coarser than droplet size in pump-mixer, and for bubble column, two simulations were run with mesh size finer and coarser than bubble diameter. The magnitude of SGS-TDF values in all the cases were compared with magnitude of other interfacial forces (like drag force, lift force, resolved turbulent dispersion force, force due to momentum advection and pressure). The results show that the relative magnitude of SGS-TDF as compared to other forces were higher for the pump-mixer than for the coarser and finer mesh bubble column simulations. This was because in the pump-mixer, the ratio of “dispersed phase particle diameter to the grid-size” was smaller than that for the bubble column runs. Also, the inclusion of SGS-TDF affected the radial hold-up, even though the magnitudes of these SGS-TDF forces appeared to be small. These results confirms that (a) the inclusion of SGS-TDF will have more pronounced effect for those Eulerian–Eulerian LES simulation where grid-size happens to be more than the particle size, and (b) that the SGS-TDF in combination with one-equation-SGS-TKE LES model serves as a tool to overcome a conceptual drawback of Eulerian–Eulerian LES model.  相似文献   

8.
Gas–liquid bubbly flows with wide range of bubble sizes are commonly encountered in many industrial gas–liquid flow systems. To assess the performances of two population balance approaches – Average Bubble Number Density (ABND) and Inhomogeneous MUlti-SIze-Group (MUSIG) models – in tracking the changes of gas volume fraction and bubble size distribution under complex flow conditions, numerical studies have been performed to validate predictions from both models against experimental data of Lucas et al. (2005) and Prasser et al. (2007) measured in the Forschungszentrum Dresden-Rossendorf FZD facility. These experiments have been strategically chosen because of flow conditions yielding opposite trend of bubble size evolution, which provided the means of carrying out a thorough examination of existing bubble coalescence and break-up kernels. In general, predictions of both models were in good agreement with experimental data. The encouraging results demonstrated the capability of both models in capturing the dynamical changes of bubbles size due to bubble interactions and the transition from “wall peak” to “core peak” gas volume fraction profiles caused by the presence of small and large bubbles. Predictions of the inhomogeneous MUSIG model appeared marginally superior to those of ABND model. Nevertheless, through the comparison of axial gas volume fraction and Sauter mean bubble diameter profiles, ABND model may be considered an alternative approach for industrial applications of gas–liquid flow systems.  相似文献   

9.
CFD simulation of hydrodynamics of gas-liquid-solid fluidised bed reactor   总被引:4,自引:0,他引:4  
A three dimensional transient model is developed to simulate the local hydrodynamics of a gas-liquid-solid three-phase fluidised bed reactor using the computational fluid dynamics (CFD) method. The CFD simulation predictions are compared with the experimental data of Kiared et al. [1999. Mean and turbulent particle velocity in the fully developed region of a three-phase fluidized bed. Chemical Engineering & Technology 22, 683-689] for solid phase hydrodynamics in terms of mean and turbulent velocities and with the results of Yu and Kim [1988. Bubble characteristics in the racial direction of three-phase fludised beds. A.I.Ch.E. Journal 34, 2069-2072; 2001. Bubble-wake model for radial velocity profiles of liquid and solid phases in three-phase fluidised beds. Industrial and Engineering Chemistry Research 40, 4463-4469] for the gas and liquid phase hydrodynamics in terms of phase velocities and holdup. The flow field predicted by CFD simulation shows a good agreement with the experimental data. From the validated CFD model, the computation of the solid mass balance and various energy flows in fluidised bed reactors are carried out. The influence of different interphase drag models for gas-liquid interaction on gas holdup are studied in this work.  相似文献   

10.
Controlled degradation of polypropylene (PP) by peroxide was carried out in a laboratory twin-screw extruder ZSK 18 and the change in Molecular Weight Distribution (MWD) was measured using Size Exclusion Chromatography–Differential Viscosimetry (SEC–DV). The MWD results were compared to MWD predictions from a kinetic model developed and validated in earlier work (Iedema et al., 2001) assuming ideal mixing. Clear deviations were observed – the measured MWD was broader – that could only be explained by unaccounted heterogeneity in the extruder. Incorporating the relatively narrow Residence Time Distribution (RTD) in the twin-screw extruder did not lead to MWD broadening. In contrast, the exponential RTD of a Continuously Stirred Tank Reactor (CSTR) yielded a MWD widening that was too extreme. A new micromixing model, based on the striation thinning model by Ottino (1980), was constructed partly based on Monte Carlo sampling using a monomer scission probability (Tobita, 1996). This model was adapted to the geometry of the extruder entrance and the peroxide feed practice consisting of introducing a few per thousand peroxide-rich PP particles among pure PP particles. This micromixing model indeed allowed obtaining very good matches between measured and modeled MWD. Under different experimental conditions with respect to initial PP quality and amount of peroxide added, with a constant value for the striation thinning parameter the errors between measured and predicted MWD were around 5%.  相似文献   

11.
Airlift reactors have been recognized as one of the promising photobioreactors for biomass/bio-energy production, where mixing has significant impact on the reactor performance. In recent years, using CFD simulations to track microorganism cells and to generate their trajectories in the reactor for reactor performance evaluations becomes more common. However, there is a lack of systematic and rigorous verifications and validations of the reliability of CFD models in particle tracking against experimental measurements in the open literature, which is vital for the faithful application of CFD in reactor design and scale-ups. In this work, we attempt to evaluate the reliability of using CFD simulations to generate trajectories of microorganisms in a draft tube column photobioreactor. A computationally promising CFD simulation model based on CFX5.7 was validated against a benchmark experimental database reported in [Luo and Al-Dahhan, 2008a] , [Luo and Al-Dahhan, 2008b] and [Luo and Al-Dahhan, 2010] . This model was then used to generate typical trajectories of microorganisms in the studied airlift column, which was further validated against experimentally measured tracer trajectories. The results indicated that the CFD model reasonably predicted the recirculation of the microorganism around the draft tube, however over-estimated the cells' residence time in the wall regions. Proper treatment for the wall region such as griding and wall function is needed to better capture the movement of microorganism cells in such bioreactors.  相似文献   

12.
The most of new technologies of reduction of NOx emission, as literature survey (Skalska et al., 2010b) suggests is focused on NOx emission control from power plants and mobile vehicles. Fewer investigations are conducted on the NOx emission abatement from chemical industry. Recently, Chacuk et al. (2007) proposed the model for the nitrous acid oxidation with the use of ozone in gas–liquid contactor. It is well known that not all of NOx can be totally absorbed in water or nitrous/nitric acid solution, as well as ozone is not totally consumed in the acidic liquid. The reaction between ozone and NOx can take place also in the gas phase. The ozone injection into exhaust gas stream followed by absorption was proposed as the NOx emission abatement. The objective of these studies was to propose kinetic model of the process and to determine the rate constants of NOx ozonation in the laboratory scale batch reactor. The process was carried out in the 0.5 dm3 volume batch reactor for different concentrations of NO, and NO2 and varying molar ratios of O3/NO at temperature 25 °C. Gaseous reagents were analyzed using a Fourier Transform Infrared Spectrometer Jasco FTIR-4200. The kinetic model of NOx ozonation process was proposed and rate constants were estimated based on experimental data.  相似文献   

13.
The flow of very-viscous-oil and air through a horizontal pipe (inner diameter 22 mm) is experimentally studied. We first build and analyze the flow pattern map; a comparison between the air–water and the air–oil flow pattern maps shows a strong influence of the fluid properties. The experimental flow maps are compared with empirical and theoretical ones – Baker (1954), Mandhane et al. (1974), and Petalas and Aziz (1998) – showing a poor agreement. Experimental pressure gradients are also reported and compared with theoretical model, but also in this case the agreement is not very satisfactory. Finally, the elongated bubble velocity and length are measured and compared to model present in the literature. We conclude that the high viscosity of the liquid phase has a strong influence on the results and that the current models are not able to predict the flow features satisfactorily.  相似文献   

14.
The paper presents a multi-fluid Eulerian model derived from binary kinetic theory of granular flows, free path theory and an empirical friction theory. The effects of the inter- and inner-particle collisions, particle translational motions and particle–particle friction are included. As the effects due to fluiddynamic particle velocity differences and particle–particle friction are considered, some unconventional terms are produced compared with the previous models. Model validation using the data from Mathiesen et al. (2000) shows that the coupling terms give a stronger and more realistic particle–particle coupling because the effects due to the fluiddynamic velocity differences are considered. The model gives reasonable predictions of the particle volume fraction, particle velocities and velocity fluctuations. The model analysis reveals that the basic particle velocity fluctuations constitute 2 terms: the velocity fluctuations of the discrete particles, and the velocity fluctuations of the continuous fluid flow. Furthermore, the simulation results show that the velocity fluctuations of the continuous fluid flow are dominant in a binary riser flow.  相似文献   

15.
The chemical vapor synthesis (CVS) reactor for the preparation of WC nanopowder from tungsten hexachloride was simulated by a two-dimensional multiphase computational fluid dynamics (CFD) model. The model solves the gas-phase governing equations of overall continuity, momentum, energy, and species mass transport inside a tubular reactor system. The population balance model is coupled with the gas-phase equations to describe the formation and growth of WC nanoparticles. The model has been validated with experimental data in terms of average particle size and concentration of unreacted precursor at the outlet. The contours of temperature, velocity, species concentration and particle size distribution (PSD) inside the tubular reactor were computed.  相似文献   

16.
This paper uses a simple separated flow model based on the classical work of Davidson (1961) to describe the complex dynamics in bubbling fluidized beds. It shows that this application is robust and independent of geometry and gas flow conditions. The model successfully simulates the pressure measurements made in a bubbling fluidized bed and it is shown that the single measurement of pressure can be used to characterise the entire fluidized bed. The successful application of the Davidson model suggests that the flow field and hence pressure field in a bubbling fluidized bed is dominated by the size and location of voids, and once given this, particle–particle or complex particle–fluid interactions make a minor direct contribution to the pressure field.  相似文献   

17.
Flow characteristics of bidisperse mixtures of particles fluidized by a gas predicted by the mixture based kinetic theory of [Garzó et al., 2007a] and [Garzó et al., 2007b] and the species based kinetic theory model of Iddir and Arastoopour (2005) are compared. Simulations were carried out in two- and three-dimensional periodic domains. Direct comparison of the meso-scale gas-particle flow structures, and the domain-averaged slip velocities and meso-scale stresses reveals that both mixture and species based kinetic theory models manifest similar predictions for all the size ratios examined in this study. A detailed analysis is presented in which we demonstrate when the species based theory of Iddir and Arastoopour (2005) will reduce to a mathematical form similar to the mixture framework of [Garzó et al., 2007a] and [Garzó et al., 2007b] . We also find that the flow characteristics obtained for bidisperse mixtures are very similar to those obtained for monodisperse systems having the same Sauter mean diameter for the cases examined; however, the domain-averaged properties of monodisperse and bidisperse gas-particle flows do demonstrate quantitative differences. The use of filtered two-fluid models that average over meso-scale flow structures has already been described in the literature; it is clear from the present study that such filtered models are needed for coarse-grid simulations of polydisperse systems as well.  相似文献   

18.
The aim of this work is to investigate experimentally the bubble breakup in a microfluidic T-junction divergence using a high-speed digital camera and a micro-Particle Image Velocimetry (micro-PIV) system. The breakup and non-breakup of N2 bubbles in glycerol–water mixtures with several concentrations of sodium dodecyl sulphate (SDS) as surfactant were studied with capillary number ranging from 0.001 to 0.1. The cross section of PMMA square microchannel is 400 μm wide and 400 μm deep. Four various flow patterns were observed at the T-junction by changing gas and liquid flow rates. The dynamics of three various types of symmetric breakup of bubbles were investigated. The symmetric breakup of bubbles type I is mainly controlled by the augmented pressure in liquid phase. The symmetric breakup of bubbles type II is controlled by both the increased pressure and viscous forces. In the symmetric breakup of bubbles type III, a scaling law for the minimum bubble neck and the remaining time during bubble breaking process were found. The transitions between breakup and non-breakup of bubbles were investigated, and a power–law relationship between bubble extension and capillary number was proposed to predict the transitions between adjacent regimes. Our experimental results reveal that the bubble breakup in a microfluidic T-junction divergence is similar to the droplet behaviours in such a device ( [Jullien et al., 2009] , [Leshansky and Pismen, 2009] and [Link et al., 2004] ).  相似文献   

19.
A two-dimensional (2D) transient model was developed to simulate the local hydrodynamics of a gas (flue gas)–solid (CaO)–solid (CaCO3) three-phase fluidized-bed carbonator using the computational fluid dynamic method, where the chemical reaction model was adopted to determine the molar fraction of CO2 at the exit of carbonator and the partial pressure of CO2 in the carbonator. This investigation was intended to improve an understanding of the chemical reaction effects of CaO with CO2 on the CO2 capture efficiency of combustion flue gases. For this purpose, we had utilized Fluent 6.2 to predict the CO2 capture efficiency for different operation conditions. The adopted model concerning the reaction rate of CaO with CO2 is joined into the CFD software. Model simulation results, such as the local time-averaged CO2 molar fraction and conversion of CaO, were validated by experimental measurements under varied operating conditions, e.g., the fraction of active CaO, chemical reaction temperature, particle size, and cycle number at different locations in a gas–solid–solid three-phase fluidized bed carbonator. Furthermore, the local transient hydrodynamic characteristics, such as gas molar fraction and partial pressure were predicted reasonably by the chemical reaction model adopted for the dynamic behaviors of the gas–solid–solid three-phase fluidized bed carbonator. On the basis of this analysis, capture CO2 strategies to reduce CO2 molar fraction in exit of carbonator reactor can be developed in the future. It is concluded that a fluidized bed of CaO can be a suitable reactor to achieve very effective CO2 capture from combustion flue gases.  相似文献   

20.
In this work, a recently proposed multi-level reactor design methodology (Peschel et al., 2010) is extended and applied for the optimal design of an ethylene oxide reactor. In a first step, the optimal reaction route is calculated taking various process intensification concepts into account. The potential of each reaction concept can be efficiently quantified, which is the economic basis for the design of advanced reactors. Based on these results, a promising concept is further investigated and a technical reactor is designed. As an extension to the design method, reactor design criteria for external and internal heat and mass transfer limitations are directly included in the optimization approach in order to design the catalyst packing. The derived reactor concept is investigated with a detailed 2D reactor model accounting for radial concentration and temperature gradients in addition to a radial velocity profile.The example considered in this work is the production of ethylene oxide which is one of the most important bulk chemicals. Due to the high ethylene costs, the selectivity is the main factor for the economics of the process. A membrane reactor with an advanced cooling strategy is proposed as best technical reactor. With this reactor design it is possible to increase the selectivity of the ethylene epoxidation by approximately 3% compared to an optimized reference case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号