首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self-healing of Engineered Cementitious Composites (ECC) subjected to two different cyclic wetting and drying regimes was investigated in this paper. To quantify self-healing, resonant frequency measurements were conducted throughout wetting-drying cycles followed by uniaxial tensile testing of self-healing ECC specimens. Through self-healing, crack-damaged ECC recovered 76% to 100% of its initial resonant frequency value and attained a distinct rebound in stiffness. Even for specimens deliberately pre-damaged with microcracks by loading up to 3% tensile strain, the tensile strain capacity after self-healing recovered close to 100% that of virgin specimens without any preloading. Also, the effects of temperature during wetting-drying cycles led to an increase in the ultimate strength but a slight decrease in the tensile strain capacity of rehealed pre-damaged specimens. This paper describes the experimental investigations and presents the data that confirm reasonably robust autogenous healing of ECC in commonly encountered environments for many types of infrastructure.  相似文献   

2.
The stress-crack opening relationship of engineered cementitious composites was determined with an inverse method. Four cement matrixes with water to cement ratio of 0.55, 0.45, 0.35, 0.25 and fiber contents of 0.5%, 1.0% in volume were selected to form different series of composites. The results show that the σ–w relationship of the cement matrix is instant strain softening after the cracking strength. After adding polyvinyl alcohol fibers, the stress-crack opening relationship of the composites changes to a double peak mode behavior as the crack bridging first decreases from cracking strength, then increases to the second peak. After that the tensile softening is displayed again with increase of crack opening. The cracking strength is governed by the cement matrix and the second peak stress is controlled by the fibers and fiber/matrix interface. The second peak is greatly increased with increase of fiber content. The second peak stress larger than the cracking strength means strain-hardening and multiple cracking performances can be expected under tension.  相似文献   

3.
This paper reports a new class of engineered cementitious composite (ECC) with characteristics of low drying shrinkage, tight crack opening and high tensile strain capacity. Research emphasis is placed on the influence of different cementitious matrix on drying shrinkage, tensile property and early age cracking behavior of the composites. Experimental results show that drying shrinkage of the composite is greatly reduced as using the low shrinkage cementitious material in matrix, while the composite remains strain-hardening and multiple cracking characteristics. The measured drying shrinkage strain at 28 days is only 109 × 10− 6 to 242 × 10− 6 for low shrinkage ECCs. For traditional ECC, the shrinkage strain at 28 days is nearly 1200 × 10− 6. The average tensile strain capacity after 28 days curing is 2.5% of the low shrinkage ECC with tensile strength of 4-5 MPa. Further, in the strain-hardening and multiple cracking stage, cracks with much smaller width compared to the traditional ECC are formed in the low shrinkage ECC.  相似文献   

4.
The effect of steel microfibers (SMF) on alkali-silica reaction (ASR) was investigated using two types of reactive aggregates, crushed opal and a Pyrex rod of constant diameter. Cracks are less visible in the SMF mortars compared with the unreinforced mortars. Due to crack growth resistance behavior in SMF mortar specimens, the strength loss is eliminated and the ASR products remained well confined within the ASR site. The expansion and the ASR products were characterized by microprobe analysis and inductive coupled plasma (ICP) spectroscopy. The confinement due to SMF resulted in a higher Na and Si ion concentration of the ASR liquid extracted from the reaction site. The higher concentration reduced the ASR rate and resulted in a lower reactivity of the reactive Pyrex rods in SMF mortars.  相似文献   

5.
A realistic method of analysis for the postcracking behavior of newly developed structural synthetic fiber reinforced concrete beams is proposed. In order to predict the postcracking behavior, pullout behavior of single fiber is identified by tests and employed in the model in addition to the realistic stress-strain behavior of concrete in compression and tension. A probabilistic approach is used to calculate the effective number of fibers across the crack faces and to calculate the probability of nonpullout failure of fibers. The proposed theory is compared with test data and shows good agreement. The proposed theory can be efficiently used to predict the load-deflection behavior, moment-curvature relation, load-crack mouth opening displacement (CMOD) relation of synthetic fiber reinforced concrete beams.  相似文献   

6.
Crack effects on gas and water permeability of concretes   总被引:6,自引:0,他引:6  
The relationship between load-induced cracking and concrete permeability is studied. Ordinary concrete (OC) and high-performance concrete (HPC), including steel fiber-reinforced concrete (HPFRC), are used. Two discs, 50 mm-thick slices, cut from 110-220 mm cylindrical specimens are diametrically loaded, as for a normal splitting test. The lateral displacement, also called the crack opening displacement (COD) is monitored for each loading cycle. After unloading, gas and finally water permeability tests are both performed, using constant head permeameter, to compare the influence of the percolating fluid and the COD. Due to the wide range of measured gas flow, Klinkenberg's and Dupuit-Forcheimer's laws are applied to compute the intrinsic gas permeability. Results suggest it increases proportionally to the cube of the COD and it matches water permeability, if only the first water percolating time is considered. The roughness parameter of the cracks induced in each concrete, is compared and discussed.  相似文献   

7.
This paper reports the durability performance of non-air-entrained Engineered Cementitious Composites (ECC) with different fly ash content when subjected to mechanical loading and freezing and thawing cycles in the presence of de-icing salt. ECC is a newly developed high performance fiber reinforced cementitious composite with substantial benefit in both high ductility in excess of 3% under uniaxial tensile loading and improved durability due to intrinsically tight crack width. After 50 freezing and thawing cycles in the presence of de-icing salt, the surface condition visual rating and total mass of the scaling residue of ECC, even those with high volume fly ash content, remain within acceptable limits according to the ASTM C 672. This level of durability holds true even for specimens pre-loaded to cracking at high deformation level. Non-air-entrained mortar specimens with and without fly ash were also used as reference specimens. As expected, these mortar prisms under identical testing conditions deteriorated severely. Pre-loaded and virgin (no pre-loading) ECC coupon specimens were also exposed to freezing and thawing cycles in the presence of de-icing salts for 25 and 50 cycles to determine their residual tensile behavior. The reloaded specimens showed negligible loss of ductility, but retained the multiple micro-cracking behavior and tensile strain capacity of more than 3%. It is also discovered that multiple micro-cracks due to mechanical loading will heal sufficiently under freezing and thawing cycles in the presence of salt solutions to restore nearly the original stiffness. These results confirmed that ECC, both virgin and micro-cracked, remain durable despite exposure to freezing and thawing cycles in the presence of de-icing salts.  相似文献   

8.
An engineered cementitious composite (ECC) produced with ground granulated blast furnace slag was developed for the purpose of achieving moderately high composite strength while maintaining high ductility, represented by strain-hardening behavior in uniaxial tension. In the material development, single fiber pullout tests and matrix fracture tests were performed, followed by micromechanical analyses to properly select the range of mixture proportion. Subsequent direct tensile tests were employed to assess the strain-hardening behavior of the composite, which exhibited high ductility and strength with the addition of slag. High ductility is most likely due to enhanced workability and fiber dispersion performance which is attributed to the oxidized grain surface of slag, as verified by fiber dispersion tests. These results suggest that, within the limited slag dosage employed in the present study, the contribution of slag to fiber dispersion outweighs the side-effect of decreased potential for saturated multiple cracking, including a slight increase in matrix fracture toughness and fiber/matrix bond strength.  相似文献   

9.
Self-healing of cracks in an ultra high performance concrete, considered as a model material, is investigated in this paper. An experimental program is carried out in order to quantify the phenomenon, which has been mainly highlighted by means of water permeability tests until now. Mechanical behaviour of self-healed concrete under three points bending, and acoustic emission analysis of the cracking mechanisms are reported. The mechanical tests demonstrate a recovery of the global stiffness, depending on the time of healing, for specimens initially cracked and then self-healed, and a slow improvement of structural strength. The acoustic emission (AE) analysis is performed in order to show that the mechanical response is due to new crystals precipitating in the crack. The microcracking of these products during three points bending tests is highlighted and an energy analysis provides insights about the cracking process of healed concrete, including damage of the newly formed crystals and continuation of the crack propagation.  相似文献   

10.
This investigation was carried out to study the effects of using a replacement percentage of saturated lightweight fine aggregate (LWA) as an internal curing agent on the shrinkage and mechanical behavior of Engineered Cementitious Composites (ECC). ECC is a micromechanically-based, designed high-performance, fiber-reinforced cementitious composite with high ductility and improved durability due to tight crack width. Standard ECC mixtures are typically produced with micro-silica sand (200 µm maximum aggregate size). Two replacement levels of silica sand with saturated LWA (fraction 0.59–4.76 mm) were adopted: the investigation used 10 and 20% by weight of total silica sand content, respectively. For each LWA replacement level, two different ECC mixtures with a fly ash-to-Portland cement ratio (FA/PC) of 1.2 and 2.2 were cast. In a control test series, two types of standard ECC mixtures with only silica sand were also studied. To investigate the effect of replacing a portion of the silica sand with saturated LWA on the mechanical properties of ECC, the study compared the results of uniaxial tensile, flexure and compressive strength tests, crack development, autogenous shrinkage and drying shrinkage. The test results showed that the autogenous shrinkage strains of the control ECCs with a low water-to-cementitious material ratio (W/CM) (0.27) and high volume FA developed rapidly, even at early ages. The results also showed that up to a 20% replacement of normal-weight silica sand with saturated LWA was very effective in reducing the autogenous shrinkage and drying shrinkage of ECC. On the other hand, the partial replacement of silica sand with saturated LWA with a nominal maximum aggregate size of 4.76 mm is shown to have a negative effect, especially on the ductility and strength properties of ECC. The test results also confirm that the autogenous shrinkage and drying shrinkage of ECC significantly decreases with increasing FA content. Moreover, increasing FA content is shown to have a positive effect on the ductility of ECC.  相似文献   

11.
We investigated the effect of aggregate concentration on the drying rate of cementitious composites with glass beads, sand grains, or expanded polystyrene (EPS) beads as aggregates. The drying rate of composites with non-diffusive aggregates (glass beads and sand grains) decreased with aggregate concentration. Composites with 60% glass beads dried a factor 1.3 slower than plain cement paste with the same w/c-ratio. Composites with EPS-beads showed the opposite trend: an increased drying rate for composites with higher aggregate concentrations. However, the effective diffusion coefficients of the EPS-composites decreased with increasing aggregate concentration. A higher aggregate concentration means that less water needs to diffuse out of the material to reach a specific degree of drying, and this effect mainly determined the drying rate of the composites with EPS-beads. The development of drying shrinkage microcracks had a small effect on the drying rate of the studied composites.  相似文献   

12.
The retardation of moisture and gas ingress associated with important degradation mechanisms in cement-based composites in general and reinforced concrete or prestressed concrete in particular is an ongoing research focus internationally. A dense outer layer is generally accepted to significantly enhance durability of structural concrete. However, cracking leads to enhanced ingress, unless the cracks are restricted to small widths. Strain-hardening cement-based composites (SHCC) make use of fibres to bridge cracks, whereby they are controlled to small widths over a large tensile deformation range. In this paper, SHCC shear behaviour is studied, verifying that the cracks which arise in pure shear are also controlled to small widths in these materials. The design of an Iosipescu shear test setup and specific SHCC geometry is reported, as well as the results of a test series. A computational model for SHCC, based on finite element theory and continuum damage mechanics, is elaborated and shown to capture the shear behaviour of SHCC.  相似文献   

13.
Previous research efforts on pulp fiber-cement composites have largely concentrated on kraft pulp fiber composites. In this research program, thermomechanical pulp (TMP) fibers were investigated as an economical alternative to kraft pulp fibers as reinforcement in fiber-cement composites. Prior to wet/dry cycling, TMP composites exhibited increased first crack strength, but lower peak strength and lower post-cracking toughness, as compared to unbleached and bleached kraft pulp composites at equivalent fiber volume fractions. It is believed that this behavior can be attributed to the lower tensile strength and shorter fiber length of TMP fibers as compared to kraft fibers. After 25 wet/dry cycles, TMP composites showed losses in first crack (peak) strength and post-cracking toughness. However, TMP composites exhibited a slower progression of degradation during wet/dry cycling than composites containing bleached or unbleached kraft fibers.  相似文献   

14.
Rheology of fiber-reinforced cementitious materials   总被引:1,自引:0,他引:1  
An improved understanding of the influence of fibers on the rheology of cementitious systems is needed so that fiber reinforcement can be used effectively. However, conventional rheometers are not suitable for testing stiff fiber-reinforced materials. In this study, a parallel plate rheometer that is capable of evaluating the rheology of stiff fiber-reinforced cement paste and mortar systems was designed and built. The governing equations for the rheometer were derived and experimental procedures were developed that yielded reproducible results. A comparative analysis of the custom-built parallel plate rheometer, a commercial rheometer and the values reported in the literature, indicated that the measurements obtained using the rheometer were reasonable. The rheometer was then used to evaluate the rheology of a variety of cement paste systems, including stiff steel fiber-reinforced cement pastes.  相似文献   

15.
The microstructural and chemical mechanisms responsible for pulp fiber-cement composite degradation during wet/dry cycling are being investigated through environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), and mechanical testing. Based on these results, a three-part progressive degradation mechanism for cast-in-place kraft pulp fiber-cement composites is proposed, which involves: (1) initial fiber-cement or fiber interlayer debonding, (2) reprecipitation of needle-like or sheath-like ettringite within the void space at the former fiber-cement interface or between the S1 and S2 fiber layers, and (3) fiber mineralization due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. This investigation also revealed that kraft pulp fibers exhibit poor resistance to degradation due to their inferior dimensional stability, as compared to thermomechanical pulp (TMP) fibers. TMP fibers contain significant amounts of lignin, which is alkali sensitive. Despite this, TMP fiber-cement composite exhibit improved resistance to degradation during wet/dry cycling. It is proposed that this improvement in durability may be attributed to the presence of lignin in the cell wall restricting fiber dimensional changes during wetting and drying, and hence, minimizing fiber-cement debonding. Additionally, it is proposed that lignin acts as physical barrier to calcium hydroxide formation within the fiber cell wall, minimizing fiber mineralization of TMP fibers.  相似文献   

16.
The dynamic behaviour of ultra-high performance cementitious composite (UHPCC) with compressive strength of 200 MPa with different steel fiber volume fractions was studied under impact using the split Hopkinson pressure bar. Three aspects of the testing: a gimbal device, wave shaping and direct strain measurement, were used to increase experimental accuracy. Results indicate that UHPCC has obvious strain rate effects. The peak stress, peak strain, elastic modulus and the area under the stress–strain curve increase with increasing strain rate. When the strain rate exceeds a threshold value, specimens with and without fibers begin to fracture. At high strain rate the unreinforced specimens fracture into small parts while fiber reinforced ones only have fine cracks on the edges. A visco-elastic damage model of UHPCC is proposed based on a nonlinear visco-elastic model (the ZWT model) and the material damage measured by the ultrasonic wave velocity method.  相似文献   

17.
Microstudy on creep of concrete at early age under biaxial compression   总被引:2,自引:0,他引:2  
An interesting phenomena of crack restoration and increasing strength of concrete under biaxial compression creep were described in this paper. A small loading apparatus was prepared and a long work distance optical microscope with variable focus was used for studying the cracks. It was found from the micrographs that these cracks diminished under biaxial compression creep. There were increases in the strength of the creep specimens under the sustained biaxial compression load compared with the free companion ones. Multiaxial compression caused by the early temperature rise inside the mass concrete may strengthen the concrete and reduce the tensile cracks during and after temperature drop.  相似文献   

18.
Kraft pulp fiber reinforced cement-based materials are being increasingly used where performance after exposure to environmental conditions must be ensured. However, significant losses in mechanical performance due to wet/dry cycling have been observed in these composites, when portland cement is the only cementitious material used in the matrix. In this research program, the effects of partial portland cement replacement with various supplementary cementitious materials were investigated. Binary, ternary, and quaternary blends of silica fume, slag, Class C fly ash, Class F fly ash, metakaolin, and diatomaceous earth/volcanic ash blends were examined for their effect on the degradation of kraft pulp fiber-cement composite mechanical properties (i.e., strength and toughness) during wet/dry cycling. After 25 wet/dry cycles, it was shown that binary composites containing 90% slag, 30% metakaolin, or greater than 30% silica fume did not exhibit any signs of degradation, as measured through mechanical testing and microscopy. Ternary blends containing 70% slag/10% metakaolin or 70% slag/10% silica fume were also effective in preventing degradation. A reduction in calcium hydroxide content and the stability of the alkali content due to supplementary cementitious material addition were shown to be primary mechanisms for improved durability.  相似文献   

19.
The influence of aggregate size and water-to-cement (w/c) ratio of the matrix on the structure of interfacial transition zone (ITZ) and the interaction between the ITZ and the matrix on the failure process of concrete under uniaxial compression were studied. The ITZ microcracking and the failure process of concrete were investigated experimentally by means of compressive and indirect tensile testing, stress-volumetric strain measurements and microscopic analyses on the model concrete containing single spherical steel aggregate with three different w/c ratios. At low w/c ratios, the rigid and smooth surface texture aggregates made by the ITZ have a significant structural difference compared to the mortar. This was more pronounced for larger aggregates. Higher structural differences between the mortar matrix and ITZ in low w/c ratio composites resulted in accelerated ITZ microcracking at high stress level. The effect of condensed microcracking in a narrower ITZ was reflected in the lower critical stress levels for the low w/c ratio composites with larger aggregates.  相似文献   

20.
Nanoscale characterization of engineered cementitious composites (ECC)   总被引:2,自引:0,他引:2  
Engineered cementitious composites (ECC) are ultra-ductile fiber-reinforced cementitious composites. The nanoscale chemical and mechanical properties of three ECC formulae (one standard formula, and two containing nanomaterial additives) were studied using nanoindentation, electron microscopy, and energy dispersive spectroscopy. Nanoindentation results highlight the difference in modulus between bulk matrix (~ 30 GPa) and matrix/fiber interfacial transition zones as well as between matrix and unreacted fly ash (~ 20 GPa). The addition of carbon black or carbon nanotubes produced little variation in moduli when compared to standard M45-ECC. The indents were observed by electron microscopy; no trace of the carbon black particles could be found, but nanotubes, including nanotubes bridging cracks, were easily located in ultrafine cracks near PVA fibers. Elemental analysis failed to show a correlation between modulus and chemical composition, implying that factors such as porosity have more of an effect on mechanical properties than elemental composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号