共查询到20条相似文献,搜索用时 0 毫秒
1.
Diffusion of single alkane molecule in carbon nanotube studied by molecular dynamics simulation 总被引:1,自引:0,他引:1
Full atomistic molecular dynamics simulations have been used to study the diffusion of alkane molecule in single wall carbon nanotube (SWCNT), with different alkane chain lengths and nanotube diameters. In this paper, we calculated the self-diffusion coefficient, mean-square gyration and bond-orientation order parameter of alkane molecule and the average intermolecular interaction energy per segment between SWCNT and alkane. Furthermore, structure of alkane in SWCNT was characterized through the radial distribution function, with results showing that the self-diffusion coefficient is related to the nanotube diameter. The component of mean-square gyration in z-direction scales with alkane chain length in SWCNT(9,9) like N1.07±0.04, which is in good agreement with the prediction from scaling theory for polymers. The obtained results show that nanotube diameter and alkane chain length are important factors affecting the behavior of one-dimensional confined alkanes. 相似文献
2.
《Carbon》2013
Low-temperature growth of carbon nanotubes (CNTs) has been claimed to provide a route towards chiral-selective growth, enabling a host of applications. In this contribution, we employ reactive molecular dynamics simulations to demonstrate how plasma-based deposition allows such low-temperature growth. We first show how ion bombardment during the growth affects the carbon dissolution and precipitation process. We then continue to demonstrate how a narrow ion energy window allows CNT growth at 500 K. Finally, we also show how CNTs in contrast cannot be grown in thermal CVD at this low temperature, but only at high temperature, in agreement with experimental data. 相似文献
3.
Hydrogen physisorption in a Li-doped single walled carbon nanotube (SWCNT) array is investigated by grand canonical Monte Carlo simulation. The optimization of hydrogen storage capacity at normal temperature and moderate pressure as a function of Li doping arrangement, doping-site position, doping ratio, and SWCNT array configuration is discussed and explained. 相似文献
4.
We review recent and original results on the vibrational properties of single wall carbon nanotubes (SWNT). We especially focus on calculations and experiments performed on nanotube bundles. So far, the main technique for probing the dynamics has been Raman spectroscopy. Here, we discuss: (i) the relation between frequency of the A1g radial breathing mode and nanotube diameter, (ii) the origin of resonance and the consequences on the profile and intensity of the Raman lines, and (iii) the assignment and resonant behaviour of the Raman lines between 700 and 1000 cm−1. Recently, inelastic neutron scattering techniques (INS) were shown to be effective tools to probe the vibrational density of states of SWNT. We review the INS results and focus on the study of low frequency excitations, especially libration-twist modes and acoustic modes. Both Raman and INS results are analysed in the light of calculations performed in a valence force field model taking into account van der Waals intertubes interactions in the bundles. 相似文献
5.
The rapid growth method for vertically aligned, single walled carbon nanotube (SWCNT) arrays on flat substrates was applied to a fluidized-bed, using ceramic beads as catalyst supports as a means to mass produce sub-millimeter-long SWCNT arrays. Fe/Al2Ox catalysts were deposited on the surface of Al2O3 beads by sputtering and SWCNTs were grown on the beads by chemical vapor deposition (CVD) using C2H2 as a feedstock. Scanning electron microscopy and transmission electron microscopy showed that SWCNTs of 2–4 nm in diameter grew and formed vertically aligned arrays of 0.5 mm in height. Thermogravimetric analysis showed that the SWCNTs had a catalyst impurity level below 1 wt.%. Furthermore, they were synthesized at a carbon yield as high as 65 at.% with a gas residence time as short as <0.2 s. Our fluidized-bed CVD, which efficiently utilizes the three-dimensional space of the reactor volume while retaining the characteristics of SWCNTs on substrates, is a promising option for mass-production of high-purity, sub-millimeter-long SWCNT arrays. 相似文献
6.
Pulsed neutron diffraction has been used to characterize the microscopic structure and purity of single walled carbon nanotubes samples produced by arc discharge. We employed a time of flight diffractometer whose performance in measuring the microscopic structural properties of light-mass materials is well known and recognized. The extended Q-range of the instrument allows for a direct inversion of the data to determine the radial distribution function of the carbon atoms. This is compared with the corresponding function produced by computer simulation. In addition, the absolute calibration of the neutron diffraction data evidences anomalies in the diffraction spectra of the carbon nanotubes, especially at the level of the total scattering section, that could not be observed in previous neutron scattering experiments. These are attributed to the presence of a substantial amount of spurious carbonaceous material that was not quantitatively detected with more conventional diagnostic techniques. 相似文献
7.
A. Colina V. Ruiz A. Heras E. Ochoteco E. Kauppinen J. López-Palacios 《Electrochimica acta》2011,(3):1294
A new combination of a low-resolution Raman spectrometer with a minipotentiostat is presented in this work to perform in situ Raman measurements during electrochemical experiments with low-cost instrumentation. The instrumental setup has been used to study the electrochemical oxidation of transparent single walled carbon nanotube (SWCNT) films supported on non-conductive substrates. The spectroelectrochemical response provides the dependence of the characteristic signatures of the SWCNT bundles with the applied potential, which is similar to the response observed for SWCNT films deposited on conducting substrates. The evolution of both the electrical current and the Raman features differs considerably for pristine and oxidized films. The spectroscopic data reveal the occurrence of two kinds of irreversible breakdowns, “oxidative burning” and functionalization of the SWCNTs, in addition to reversible p-doping. 2D-correlation has been applied to analyze the evolution of the spectra with potential and has provided more detailed information than expected from a low spectral resolution spectrometer. 相似文献
8.
The mechanical characteristics of a single-walled carbon nanotube (SWCNT) filled with C60 fullerene subject to nanoindentation is studied using molecular dynamics (MD) simulations. The effects of temperature, indentation velocity, adhesion, and tip sizes were evaluated. The simulated results clearly show that the exerted load, Young’s modulus, elastic energy, and plastic energy decrease significantly with increasing temperature and decreasing indentation velocity and tip size. C60 fullerenes can effectively increase the mechanical strength of a SWCNT because they act as a “barrier” to resist the radial deformation, as well as an inner wall in a double-walled carbon nanotube. With the same indentation depth, the ratio of elastic energy to plastic energy for a material gradually increases with the increase in the radius of the tip. This indicates that the elastic recovery of a material is better when the tip has a larger radius. 相似文献
9.
Dry densification of carbon nanotube bundles 总被引:1,自引:0,他引:1
A dry method for densifying vertically aligned carbon nanotube bundles is proposed and experimentally validated. The process uses the deposition of thin SiO2 films to seal the porous CNT bundles at low pressure. When the CNT bundles are transferred back to ambient pressure they are densified by the pressure difference obtained between the inner and outer sides of the thin film. The effects of the densification have been studied for different thicknesses of SiO2 films deposited by two different deposition techniques. The diameters of the narrowest densified sections are 26 ± 3% of their original sizes after dry densification by 50 nm thick SiO2. The proposed dry densification method is also compared to existing liquid-based methods and its limitations are discussed. 相似文献
10.
采用GCMC法对不同温度和压力下纯CH4在石墨化炭黑上的吸附平衡进行了分子模拟研究,选用Lennard-Jones 12—6势能函数和联合原子力场参数(TraPPE)对体系进行势能计算,并将吸附平衡预测结果与实验数据进行了比较分析。结果表明,在所研究的温度范围内,除了在低压的一定区间外,GCMC模拟结果在中压和高压条件下与实验数据基本吻合,表明采用GCMC方法模拟甲烷分子在石墨化炭黑上的吸附平衡数据是可以进行准确预测的。在此基础上,利用模拟的吸附平衡数据计算不同温度下CH4的Henry常数进而到得极限吸附热,计算结果与实验数据接近。 相似文献
11.
12.
Aluminum nitride‐single walled carbon nanotube nanocomposite with superior electrical and thermal conductivities
下载免费PDF全文

Amrita Chakravarty Ravindra Singh Sudakshina Roy Ujjal Chowdhury Sumantra Basu Sampad Kumar Biswas 《Journal of the American Ceramic Society》2017,100(8):3360-3364
Development of aluminum nitride (AlN)‐single walled carbon nanotube (SWCNT) ceramic‐matrix composite containing 1‐6 vol% SWCNT by hot pressing has been reported in this article. The composites containing 6 vol% SWCNT are dense (~99% relative density) and show high dc electrical conductivity (200 Sm?1) and thermal conductivity (62 Wm?1K?1) at room temperature. SWCNTs contain mostly metallic variety tubes obtained by controlled processing of the pristine tubes before incorporation into the ceramic matrix. Raman spectroscopy and field emission scanning electron microscopy (FESEM) of the fracture surface of the samples show the excellent survivability of the SWCNTs even after high‐temperature hot pressing. The results indicate the possibility of preparation of AlN nanocomposite for use in plasma devices and electromagnetic shielding. 相似文献
13.
In the present work, we explored the diameter selectivity of dynamic self-assembly for the single-strand DNA (ssDNA) encapsulation in double-walled nanotubes (DWNTs) via molecular dynamics simulation method. Moreover, the pulling out process was carried out by steered molecular dynamics simulations. Considering π-π stacking and solvent accessibility together, base-CNT binding should be strongest on a graphene sheet and weakest on the inner CNT surface. When pulling the ssDNA out of the single-walled carbon nanotube (SWNT), the force exhibits characteristic fluctuations around a plateau about 300 pN. Each fluctuation force pulse to pull ssDNA corresponds to the exit of one base. In addition, the solvents used for the system are also of significant interest. Water does play an important role in encapsulation process but doesn't in the pulling out process. 相似文献
14.
We perform molecular dynamics simulations of narrow single-walled carbon nanotubes (SWNTs) in aqueous urea to investigate the structure and dynamical behavior of urea molecules inside the SWNT. Even at low urea concentrations (e.g., 0.5 M), we have observed spontaneous and continuous filling of SWNT with a one-dimensional urea wire (leaving very few water molecules inside the SWNT). The urea wire is structurally ordered, both translationally and orientationally, with a contiguous hydrogen-bonded network and concerted urea's dipole orientations. Interestingly, despite the symmetric nature of the whole system, the potential energy profile of urea along the SWNT is asymmetric, arising from the ordering of asymmetric urea partial charge distribution (or dipole moment) in confined environment. Furthermore, we study the kinetics of confined urea and find that the permeation of urea molecules through the SWNT decreases significantly (by a factor of ~20) compared to that of water molecules, due to the stronger dispersion interaction of urea with SWNT than water, and a maximum in urea permeation happens around a concentration of 5 M. These findings might shed some light on the better understanding of unique properties of molecular wires (particularly the wires formed by polar organic small molecules) confined within both artificial and biological nanochannels, and are expected to have practical applications such as the electronic devices for signal transduction and multiplication at the nanoscale. 相似文献
15.
Three activated carbon fibers (ACFs) with different BET specific surface areas (SSAs) were prepared. Experimental characterization and methane adsorption on the ACFs were measured by the intelligent gravimetric analyzer (IGA-003, Hiden) at 258 and 298 K. Correlations proposed between the methane adsorption capacity and SSA indicate that the SSA plays an important role on storage amount at a given temperature. A detailed experimental investigation was focused on the sample ACF3 of the highest SSF of 1511 m2/g at five temperatures, from 258 to 298 K. The temperature dependence for methane adsorption amount on ACF3 at 1.8 MPa is proposed. It shows that temperature is vital to methane storage capacity for ACF3, and adsorption storage at the temperatures below 280 K is recommended for favorite uptakes. To model ACF3, the pores are described as slit-shaped with a pore size distribution that was determined by molecular simulation and the statistics integral equation. Predictions of methane adsorption, carried out at 258 and 298 K and high pressures by molecular simulation, indicate that our sample ACF3 can reach the uptake of 14.99 wt% at 4.0 MPa and 298 K, which is comparable with the best result in the literature. 相似文献
16.
为解决煤层抽放气中CH4/N2的分离问题,以椰壳炭化料为原料,采用炭化、活化和炭沉积相结合的方法,以苯为沉积剂,改变工艺条件,制备了不同性能的炭分子筛,研究了炭分子筛前驱体的种类、苯流量对炭分子筛分离效果的影响,结果表明,在炭化温度450℃,炭化时间40 min,活化温度850℃,活化时间120 min时制备的炭分子筛前驱体,进一步制成炭分子筛对CH4/N2的分离效果最好;在750℃,沉积时间30 min,苯流量0.45 m L/min时制备的炭分子筛对CH4/N2的分离效果最好。 相似文献
17.
18.
High purity single walled carbon nanotubes (SWCNTs) were prepared from arc discharge produced cloth-like soot by a new purification strategy, in which liquid oxidation and steam oxidation were combined with a freeze-drying process to remove the metallic and carbonaceous impurities. The process gives a product of >98% purity, which is acquired from a gram-scale dirty raw soot with an overall yield of ∼75% of the SWCNTs. The purity of the samples was characterized by thermogravimetric analysis, scanning and transmission electron microscopy, Raman and Vis-NIR spectroscopy, and magnetometry. A highly pure SWCNT sample with relative purity of 170.4% and IG/ID value of 78.92 is achieved. Experiments showed that HNO3/HCl refluxing combined with freeze-drying is the key process that renders the crude SWCNTs hydrophilic with a large surface area, and thus remarkably increases the efficiency of the steam treatment to remove most of the carbonaceous impurities. 相似文献
19.
《化学工业与工程技术》2015,(4):69-72
采用Aspen adsorption对空气在碳分子筛上的吸附过程进行了数值模拟,得到了氧气的穿透曲线和氮气出口浓度随时间的变化,考察了吸附压力、原料气流速和原料气中氩气浓度对穿透曲线的影响。研究表明:氧气和氮气出口浓度的模拟值与试验值吻合良好,当压力从0.58 MPa增大到0.98 MPa时,氧气的穿透时间延长了55.6%;穿透时间随原料气流速增大迅速缩短,但变化幅度在流速大于0.004 mol/s后趋于平缓;当原料气中氧气浓度不变时,氩气浓度对氧气的穿透曲线影响甚微。 相似文献
20.
The simultaneous voltammetric determination of adenosine (ADS) and dopamine (DA) using a single wall carbon nanotube (SWCNT) modified glassy carbon electrode (GCE) is reported. This has physiological importance in controlling Parkinson’s disease. In phosphate buffer medium of pH 7.2, the concentration vs. peak current plots were linear in the range 1–100 μM for ADS and DA. A comparison of the voltammetric response of DA at acid-treated (purified and super-purified) and untreated SWCNT modified GCE indicates that the oxidation peak current of DA decreases considerably at the treated SWCNT modified GCE. This indicates that metallic impurities in nanotubes play a large role in enhancing the electrochemical current. The detection limit (3σ) and sensitivity observed for ADS and DA were 34.7 μM, 7 μM and 9.5 nA μM−1, 77.9 nA μM−1, respectively. 相似文献