共查询到20条相似文献,搜索用时 0 毫秒
1.
Three types of ordered mesoporous carbon materials with different pore characteristics have been synthesized via different routes. Whatever the synthesis route was, triblock copolymer was employed as both a carbon precursor and a structure-directing agent. The relationship between the capacitances of carbon electrodes and their pore characteristics was elucidated in detail. The material C-P exhibits the lowest resistance and highest specific capacitance value of exceeding 170 F/g among these carbon materials, which can be due to not only high surface area but also its appropriate pore size distribution. In addition, the noteworthy is that the maintenance of specific capacitance with increasing current load for each sample is better than that for general activated carbons, where larger mesopores and high mesopore fraction play important roles in the rate capability. 相似文献
2.
KOH activation of ordered mesoporous carbons prepared by a soft-templating method and their enhanced electrochemical properties 总被引:1,自引:0,他引:1
Ordered mesoporous carbon (COU-2) was synthesized by a soft-templating method. The COU-2 mesoporous carbon was activated by using KOH to improve its porosity. The mesopore size of COU-2 was 5.5 nm and did not change by the KOH activation. But, the BET surface area of COU-2 largely increased from 694 to 1685 m2/g and total pore volume was increased from 0.54 to 0.94 cm3/g after the KOH activation. The large increase of micropore volume is due to the increase of the surface area. Electrochemical cyclic voltammetry measurements were conducted in aqueous (1 M sulfuric acid) and organic (1 M tetraethyl ammonium tetrafluoroborate/polypropylene carbonate) electrolyte solutions. The KOH-activated COU-2 carbon shows superior capacitances over the COU-2 carbon and a commercial microporous carbon both in aqueous and organic electrolyte solutions. These results suggest that the carbons having regularly-interconnected uniform mesopores and micropores in thin pore walls are desirable for the electrodes in electrochemical double-layer capacitors. 相似文献
3.
4.
Simple hydrothermal synthesis of ordered mesoporous carbons from resorcinol and hexamine 总被引:1,自引:0,他引:1
Hexamine has been used as a release source of formaldehyde towards the self-assembly synthesis of resorcinol/formaldehyde (RF) resin-based mesoporous carbons under hydrothermal conditions. The obtained mesoporous carbons exhibit the micrometer-sized, sphere-like morphology and a high surface area. The use of hexamine instead of formaldehyde efficiently harnesses the organic–organic self-assembly of RF resin and block copolymer. Ordered mesostructures can be obtained over a wide range of hydrothermal temperature without the extra addition of inorganic bases or acids as catalysts. The method described here has the advantage of being a one-pot procedure and only involves the use of several organic precursors in an aqueous system. 相似文献
5.
Ordered mesoporous carbons (OMC) were produced by pyrolysis of hydrocarbons adsorbed in two different silica matrices (MCM-48 and SBA-15), followed by dissolution of the matrix in either hydrofluoric acid or sodium hydroxide. Some carbons were subsequently heat treated at temperatures of up to 1600 °C. The chemistry of the external surface was studied by X-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectroscopy (SIMS). Information on the graphitic order of the surface of the mesopores was obtained from low-pressure nitrogen adsorption data. The external and internal surface of the OMC has a polyaromatic, graphite-like character. This character increases considerably with increasing pyrolysis and/or post-pyrolysis temperature, as expected. According to the XPS and the nitrogen adsorption data, this increase was especially pronounced for temperatures above 1100 °C. In spite of the different pore structures, only small differences in the polyaromatic character were found for OMC synthesised either in a MCM-48 or in a SBA-15 matrix. Differences exist for the non-carbon elements. When hydrofluoric acid is used for dissolution of the silica matrix, organic fluorine compounds are formed. Their concentration is higher when a MCM-48 matrix as opposed to a SBA-15 matrix was used. Dissolution of the silica matrix in sodium hydroxide yielded a less contaminated OMC as compared to dissolution in hydrofluoric acid. 相似文献
6.
7.
《Polymer Composites》2017,38(7):1438-1446
Graphene‐containing ordered mesoporous carbons (GOMCs) with low inner resistance, well‐defined mesoporous, and high specific surface area was prepared via a one‐pot aqueous route, followed by carbonization in nitrogen atmosphere. A sandwich‐like microstructure was built by a cooperative self‐assembly reaction among graphene oxide (GO) sheets, resorcinol–hexamethylenetetramine (HMTA) aqueous solution and amphiphilic triblock copolymer. By adjusting the ratio of GO and the soft template F127 in the precursor mixture, carbons with a controllable pore structure and a maximum surface area of 1,195 m2/g has been prepared. The supercapacitor based on GOMC‐2.0‐F1.5 shows a high electric conductivity (no obvious IR drop was found during charge/discharge process), high specific capacitance (209 F/g), and excellent cycling stability (no capacitance loss was found after 5,000 cycles). POLYM. COMPOS., 38:1438–1446, 2017. © 2015 Society of Plastics Engineers 相似文献
8.
以SBA-15为模板,蔗糖为炭源,在不同的炭化温度下合成了不同比表面积的中孔炭材料。利用红外光谱(IR), 小角X射线衍射(XRD), 透射电镜(TEM),N2吸脱附及循环伏安测试等技术考察了不同炭化温度对中孔炭材料形貌、比表面积、孔体积及比电容的影响。结果表明:最佳炭化温度为700℃,TEM观测表明,700℃炭化所制备的样品孔结构呈二维六角有序分布,N2吸脱附测试表明,该样品的孔体积为1.88 cm38226;g-1,比表面积为1394 m28226;g-1,具有典型的中孔结构和集中的中孔分布,它的最可几孔径为3.4 nm;采用循环伏安测试电极及电容器的电化学行为,结果显示,该样品单电极在6 mol8226;L-1的KOH电解液中,扫描速度为1 mV8226;s-1时,比电容可达212 F8226;g-1,是一种理想的超级电容器电极材料。 相似文献
9.
Synthesis of nanocast ordered mesoporous carbons and their application as electrode materials for supercapacitor 总被引:1,自引:0,他引:1
Various nanocast ordered mesoporous carbons (OMCs) were synthesized using mesoporous silicas such as SBA-15, SBA-16, KIT-6, SBA-3 and MCM-48 as templates via nanocasting pathway. The structures of OMCs were analyzed by X-ray diffraction, transmission electron microscope and nitrogen sorption technique. These OMCs with well-defined pore structure were used as model electrode materials for investigating the influence of pore structure on their double layer capacitances. The cyclic voltammetry and galvanostatic charge/discharge measurements were conducted to estimate the capacitive behaviour of OMCs. The results show that the mesopore structures of OMCs play an important role in improving surface utilization for the formation of electrical double layer. OMCs synthesized from SBA-15 and SBA-16 show great advantage over others because their micropores are being easy accessible through the mesopores, thus allowing rapid electrolyte ion diffusion. To achieve a higher specific capacitance (μF cm−2), the optimized amount ratio between micropore and mesopore needs to be controlled. In addition, great impact of the electrode disc thickness on the capacitive performance was demonstrated by a series of careful measurements. 相似文献
10.
11.
12.
13.
14.
Marina Enterría Fabián Suárez-García Amelia Martínez-Alonso Juan M.D. Tascón 《Carbon》2012,50(10):3826-3835
Hierarchical micro–mesoporous carbons with high porosity development and ordered structure were prepared. The innovative proposal consists in developing microporosity in ordered mesoporous carbon by chemical activation in template presence in order to minimize the structural damage. Thus, we have directly carried out the chemical activation of a mesoporous carbon/silica composite with KOH. The effect on mesoporous ordered structure of both KOH/carbon ratio and activation temperature has been studied. Following chemical activation the specific surface area is increased from 341 to 1757 m2/g and the micropore volume becomes almost six times larger than initial value. Although a slight widening of the mesopore distribution and an increase in the mesopore volume has been observed during activation, TEM and XRD results reveal an excellent conservation of the ordered mesoporous structure during activation even at conditions well above the limits that a CMK-3 type carbon can resist. 相似文献
15.
16.
This paper reports for the first time superior electric double layer capacitive properties of ordered mesoporous carbon (OMCs) with varying ordered pore symmetries and mesopore structure. Compared to commercially used activated carbon electrode, Maxsorb, these OMC carbons have superior capacitive behavior, power output and high-frequency performance in EDLCs due to the unique structure of their mesopore network, which is more favorable for fast ionic transport than the pore networks in disordered microporous carbons. As evidenced by N2 sorption, cyclic voltammetry and frequency response measurements, OMC carbons with large mesopores, and especially with 2-D pore symmetry, show superior capacitive behaviors (exhibiting a high capacitance of over 180 F/g even at very high sweep rate of 50 mV/s, as compared to much reduced capacitance of 73 F/g for Maxsorb at the same sweep rate). OMC carbons can provide much higher power density while still maintaining good energy density. OMC carbons demonstrate excellent high-frequency performances due to its higher surface area in pores larger than 3 nm. Such ordered mesoporous carbons (OMCs) offer a great potential in EDLC capacitors, particularly for applications where high power output and good high-frequency capacitive performances are required. 相似文献
17.
Simple encapsulation of 3 nm gold nanoparticles in ordered mesoporous carbon with large pores of 17 nm and thick pore walls of 16 nm was achieved by a metal-ligand coordination assisted-self-assembly approach.Polystyrene-block-polyethylene-oxide (PS-b-PEO) diblock copolymer with a large molecular weight of the PS chain and mercaptopropyltrimethoxysilane were used as the template and the metal ligand,respectively.Small-angle X-ray scattering,X-ray diffraction,transmission electron microscopy,and X-ray photoelectron spectroscopy showed that monodispersed aggregation-free gold nanoparticles approximately 3 nm in size were partially embedded in the large open pore structure of the ordered mesoporous carbon.The strong coordination between the gold species and the mercapto groups and the thick porous walls increased the dispersion of the gold nanoparticles and essentially inhibited particle aggregation at 600 ℃.The gold nanoparticles in the ordered mesoporous carbon are active and stable in the reduction of nitroarenes involving bulky molecules using sodium borohydride as a reducing agent under ambient conditions (30 ℃) in water.The large interconnected pore structure facilitates the mass transfer of bulky molecules. 相似文献
18.
19.
对3种常见有序介孔碳(OMCs)吸附脱除典型气相多环芳烃--萘进行了研究。分别采用吸附等温线模型(Langmuir、Freundlich、Sips)和恒定浓度波动力学模型对吸附等温线和穿透曲进行拟合分析。采用程序升温脱附法通过失重曲线分析了吸附剂的再生性能。结果表明:Langmuir模型和Sips模型能很好地描述低浓度气相萘在OMCs上的静态吸附行为(R2 > 99%),吸附量呈CMK-5 > CMK-3 > FDU-15排列。恒定浓度波动力学模型具有较高的拟合度,介孔促使3种吸附剂对萘分子具有较高的吸附扩散系数。具有微通孔结构的CMK-5和FDU-15表现出更好的再生性能。综合吸脱附动力学分析,CMK-5在3种吸附剂中表现出更好的应用潜能。 相似文献
20.
In this work, a comparative study on the electrocatalytic activities of ordered mesoporous carbons (OMCs) and graphene (GR) is presented. Using voltammetry and amperometry as detection methods, four DNA bases, double-stranded DNA (dsDNA), six important electroactive compounds and various biomolecules were employed to investigate their electrochemical responses on OMC and GR modified glassy carbon electrodes (OMC/GCE and GR/GCE). The results show that OMC/GCE enhances the electron transfer kinetics of these compounds compared to GR/GCE. The discrepancy in electrochemical activities can be attributed to the different microstructures of OMC and GR, which were examined by transmission electron microscopy, X-ray photoelectron spectra, X-ray diffraction, Raman spectra and nitrogen adsorption–desorption. 相似文献