首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Diamond-like carbon films have been fabricated using 308 nm excimer laser ablation in vacuum followed by deposition at temperatures between 77 K and 573 K. Optical band gap energies are obtained from UV/optical spectroscopy. Raman spectra and X-ray photoelectron spectra (XPS) show that the sp3/(sp2 + sp3) ratio in these films is in excess of 0.7 in films deposited at 77 K and 300 K. This ratio decreases to 0.2 in films deposited at 573 K. It is found that films deposited at cryogenic temperatures consist of a matrix structure assembled from embedded nanometer clusters, while films deposited at 300 K or higher temperature are amorphous and atomically flat. Microstructural features in cryogenic films are discussed in relation to the mechanism of deposition and possible phase transitions during assembly of these films.  相似文献   

2.
Thin ZrC films were grown on (1 0 0) Si substrates at temperatures from 30 to 500 °C by the pulsed laser deposition technique. Auger electron spectroscopy investigations found that films contained oxygen concentration below 2.0 at%, while X-ray photoelectron spectroscopy investigations showed that oxygen is bonded in an oxy-carbide type of compound. The films’ mass densities, estimated from X-ray reflectivity curve simulations, and crystallinity improved with the increase of the substrate temperature. Williamson–Hall plots and residual-stress measurements using the modified sin2 ψ method for grazing incidence X-ray diffraction showed that the deposited films are nanostructured, with crystallite sizes from 6 to 20 nm, under high micro-stress and compressive residual stress. Nanoindentation investigations found hardness values above 40 GPa for the ZrC films deposited at substrate temperatures higher than 300 °C. The high density of the deposited films and the nm-size crystallites are the key factors for achieving such high hardness values.  相似文献   

3.
Aluminum gallium oxide (AGO) films were prepared on conventional c-plane sapphire by pulsed laser deposition (PLD). In the current PLD-AGO studies, target composition or growth temperature is usually the main deposition variable, and the other growth conditions are fixed. This would make it difficult to fully understand the theory and characterization of AGO films. In this study, several growth parameters such as target composition, gas atmosphere, laser repetition frequency, growth pressure, and substrate temperature (Ts) were all modulated to realize and optimize the AGO growth. When the (AlxGa1-x)2O3 target with the Al content larger than 20?at% was used, a serious target poisoning phenomenon occurred, leading to the extremely unstable growth rate. In comparison to the AGO film grown with argon atmosphere, the higher transparency was reached in the film prepared with oxygen atmosphere due to the relative abundance of oxygen. Because of the homogeneous oxygen reduction, the AGO film with the higher crystal quality was obtained at a higher laser repetition frequency. With an increment of growth pressure, the Al content of AGO film was increased. The growth of AGO film at the higher Ts would cause the higher bandgap value, smoother surface, and growth rate degradation. Additionally, the crystal quality of AGO film can be also improved both by increasing the growth pressure and Ts. The better characterization can be reached in the AGO film grown using the (Al0.05Ga0.95)2O3 target with oxygen atmosphere at the working pressure of 2?×?10?1 Torr, the laser repetition frequency of 10?Hz, and the Ts of 800?°C. When the metal-semiconductor-metal photodetector fabricated with this AGO active layer, the best performance including the photocurrent of 7.56?×?10?8 A, dark current of 1.59?×?10–12 A, and photo/dark current ratio of 4.76?×?104 (@5?V and 240?nm) were achieved.  相似文献   

4.
We have carried out very high temperature heat treatment at 1400–2700 °C of about 10 nm-thick amorphous carbon thin films deposited on refractory substrates MgO, Al2O3, and yttria-stabilized zirconia (YSZ) using pulsed laser deposition techniques. After the annealing, a few nanometer scale sp2 crystallization of the films and a large corrugation with a height of more than 1 μm were observed by Raman spectroscopy analysis and optical/atomic force microscopes, respectively. The corrugation is probably caused by the formation of gases at the film/substrate interface during the heat treatment.  相似文献   

5.
《Ceramics International》2016,42(6):6701-6706
Undoped and Al-doped ZnO (AZO) thin films (Al: 3, 5 at%) using a series of high quality ceramic targets have been deposited at 450 ºC onto glass substrates using PLD method. The used source was a KrF excimer laser (248 nm, 25 ns, 2 J/cm2). The study of the obtained thin films has been accomplished using X-ray diffraction (XRD), M-lines spectroscopy and Rutherford backscattering spectroscopy (RBS). XRD patterns have shown that the films crystallize in a hexagonal wurtzite type structure with a highly c-axis preferred (002) orientation, and the grain sizes decrease from 37 to 25 nm with increasing Al doping. The optical waveguiding properties of the films were characterized by means of the prism-coupling method. The distinct M-lines of the guided transverse magnetic (TM) and transverse electric (TE) modes of the ZnO films waveguide have been observed. The M-lines device has allowed determination of the accurate values of refractive index and thickness of the studied ZnO and AZO thin films. An evaluation of experimental uncertainty and calculation of the precision of the refractive index and thickness were developed on ZnO films. The RBS results agree with XRD and m-lines spectroscopy measurements.  相似文献   

6.
The effect of nitrogen ambient pressure on growth of AlN films has been examined. High-quality epitaxial AlN films were grown on (0001) sapphire substrates using pulsed laser deposition from a sintered AlN target in low nitrogen ambient of 9.0×10−5 Torr. The orientation of AlN films can be controlled by nitrogen pressure. AlN films are c-axis oriented when grown in a nitrogen pressure of 9.0×10−5 to 4.0×10−2 Torr. Film orientation converted to a-axis as nitrogen pressure increased to 4.0×10−1 Torr. The X-ray rocking curves of the AlN (0002) peak became narrower with decreasing ambient pressure and yielded a full width at half-maximum of 0.078°. The N/Al composition ratio increases with nitrogen pressure.  相似文献   

7.
The influence of the ambient argon gas (Ar) pressure on the properties of the hydrogenated amorphous carbon (a-C:H) films deposited by pulsed laser deposition (PLD) using camphoric carbon (CC) target have been studied. The a-C:H films are deposited with varying Ar pressure range from 0.01 to 0.23 Torr. SEM and AFM show that the particle size of films is decreases, while the roughness increases with higher Ar pressure. The FTIR measurement revealed the presence of hydrogen in the a-C:H films. We found the surface morphology, structural and physical properties structure of a-C:H films are influenced by the presence of inert gas and the ratio of sp2 trigonal component to sp3 tetrahedral component is strongly dependent on the inert gas pressure. We suggest that these phenomena are due to the effect of the optimum concentration of the Ar atoms in the C lattice. Improvement of the structural properties of the a-C:H films deposited in inert gas environment using CC target reveals different behaviour than reported earlier.  相似文献   

8.
Diamond-like carbon films were prepared by pulsed laser ablation of graphite target in argon plasma produced from electron cyclotron resonance (ECR) microwave discharge and analyzed by Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The analysis shows that the films prepared with argon plasma assistance have different chemical structure compared with the films prepared in vacuum without plasma assistance. The structure of the films prepared with plasma assistance depends strongly on the bias voltages applied on the substrate. Surface morphology observation shows that the films prepared with argon plasma assistance have a smoother surface than the films prepared without plasma assistance. The re-sputtering of the growing film due to the bombardment of the plasma stream results in reduction of the deposition rate. The ablation plumes during film preparation with and without plasma assistance were examined through optical emission spectroscopy. In vacuum, emission lines from mono-atomic carbons and carbon ions dominate the plume emission. In argon plasma, the plume emission exhibits different behavior in its temporal and spatial evolution. It is initially dominated by strong lines from mono-atomic carbons and carbon ions and then evolves to consist mainly of emissions from C2 molecules superposed on a featureless continuum. It is also found that the emission intensity of the C2 molecules as well as the continuum varies with the bias voltages.  相似文献   

9.
Two metal dopants were simultaneously added into a diamond-like carbon (DLC) matrix using a KrF pulsed laser system at room temperature with no post-processing. The nanometer thin films were fabricated from carbon source targets containing the two metals of interest, Ti and Ni, in atomic percentages 2.5%, 5%, 7.5% and 10% each. Films from carbon targets containing only 5% Ni or 5% Ti were also deposited for comparison against the dual-metal containing films. Microstructure analysis shows that each individual metal reacted independently and uniquely with carbon as confirmed by XPS and surface analysis shows the presence of TiC bonds and Ni0. Therefore, there was no reaction between Ti and Ni as metals confirmed by XPS. Through this independent interaction, a superposition of microstructural properties was obtained as if the metals were doped separately into DLC. The separate interactions of the two metals with carbon were important as they were able to play separate and different roles in enhancing the properties of DLC. In addition, TEM analysis confirmed a unique self-assembly state where the nickel ions converge into nanosized clusters of ~ 5 nm in diameter and predominantly oriented in a (200) direction. The resultant films were also extremely smooth with RMS roughness of about 0.1 nm, thus retaining the inherent smoothness of DLC films. The combined Ti/Ni films could be used as substrates to grow carbon nanotubes with controlled density which could be used as cold electron emitters. Thus, it is interesting to study the growth mechanism and microstructure of the composite films.  相似文献   

10.
We review our significant results concerning pulsed laser deposition (PLD) of some ferroelectric compounds: (i) lead magnesium niobate Pb(Mg1/3Nb2/3)O3 (PMN); (ii) lead magnesium niobate–lead titanate Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT), with variable PT contents; (iii) La-doped lead zirconate titanate (Pb1  xLax)(Zr0.65Ti0.33)O3 (PLZT); and (iv) Nb-doped lead zirconate titanate Pb0.988(Zr0.52Ti0.48)0.976Nb0.024O3 (PNZT). A parametric study has been performed in order to evidence the influence of the deposition parameters (laser wavelength, laser fluence, oxygen pressure, substrate type and temperature, RF power discharge addition, etc.) on the film properties and to identify the best growing conditions. Techniques including atomic force microscopy (AFM), X-ray diffraction (XRD), scanning electron microscopy (SEM), secondary ions mass spectroscopy (SIMS), transmission electron microscopy (TEM), electrical and ferroelectric hysteresis measurements have been used for layer characterization.  相似文献   

11.
《Ceramics International》2020,46(15):24147-24154
Aluminum-gallium oxide (AGO) films on c-plane sapphire substrates by pulsed laser deposition are described. Both nitrogen and oxygen annealing effects on the structural and optical properties of AGO films are investigated. The AGO film shows an amorphous structure when deposited at low temperatures (≤400 °C) while a crystalline structure at 800 °C. After post annealing at 900 °C, an amorphous-to-crystalline phase transformation for the 400°C-deposited film occurs and shows the preferred β phase. The corresponding optical bandgap also increases from 5.14 eV to 5.41–5.46 eV depending on the annealing ambience. From Raman measurements, the 800°C-deposited AGO sample possesses a more stable O–Ga–O bonding compared to that of the 400°C-deposited one after annealing. Unusually, an evident increase in the nitrogen content is observed for the samples after post annealing at 900 °C in nitrogen atmosphere. The rapid dissociation of oxygen atoms may accelerate the disintegration of crystals and rearrangement, which makes the AGO film adsorb nitrogen atoms and cause the grain size to be significantly reduced. However, the extent of the nitrogen incorporation seems to have no apparent effect on the optical properties. All the AGO films show the optical transmittance over 80% in the ultraviolet–visible region with the calculated bandgaps more than 5.4 eV. Details of the mechanism about the nitrogen incorporation into the annealed AGO films via the oxygen vacancies or micro-pores will be discussed.  相似文献   

12.
The properties of tetrahedral amorphous carbon (ta-C) films grown by pulsed laser deposition (PLD) using camphoric carbon (CC) target and their respective effects of diamond percentages by weight in the target (Dwt.%) are discussed. Scanning electron microscopy (SEM), atomic force microscopy (AFM), Visible-Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses indicated that the Dwt.% noticeably modified the sp3 bonds content and the morphology of the ta-C films. The optical gap (Eg) and electrical resistivity (ρ) increase with Dwt.% up to 1.6 eV and 5.63×107 (Ω cm), respectively, for the ta-C films deposited using target with higher of 50 Dwt.%. We found that the Dwt.% has modified the surface morphological, structural, bonding and physical properties of the camphoric carbon films.  相似文献   

13.
We report on the manufacturing of ultra-low density carbon foam produced by pulsed laser deposition. Mean mass density, morphology and structure were investigated within a broad range of process parameters. We have been able to obtain carbon foam layers having tunable mean density and thickness in the range 1–1000 mg/cm3 and 5–80 μm, respectively. Surface uniformity has been achieved over ∼1 μm2 areas with mean pore size around 10 nm. The morphological/structural properties have been investigated by means of quartz crystal microbalance, scanning electron microscopy and Raman spectroscopy. Based on these results, this work shows how pulsed laser deposition can be exploited as a versatile tool for the deposition of carbon foams with tunable and tailored density, thickness and uniformity.  相似文献   

14.
Ultrananocrystalline diamond (UNCD)/amorphous carbon (a-C) composite thin films were grown in ambient hydrogen by pulsed laser deposition using a graphite target, and their optical properties were determined by optical absorption spectroscopy and Raman scattering spectroscopy. Three optical bandgaps exist. Two bandgaps are indirect and their values were estimated to be 1.0 eV and 5.4 eV; these bandgaps correspond to the a-C surrounding the UNCDs and the UNCDs respectively. The third bandgap is direct and has a value of 2.2 eV, which significantly contributes to a large absorption coefficient, (106 cm 1 at 3.0 eV). Possible origins of the third bandgaps are the grain boundaries (GBs) between the UNCDs and the a-C since they are specific to the UNCD/a-C composite films. The infrared absorption spectrum and the Raman scattering spectrum revealed the incorporation of hydrogen in the GBs. The hydrogen incorporated in the GBs might also have some influence on the appearance of the direct bandgap and its value.  相似文献   

15.
Carbon-rich ceramics are an emerging class of materials with attractive high-temperature properties, including resistance to crystallization, dense microstructure, and low porosity. We explored direct synthesis of carbon-rich hafnia, which is known to form as a compact interlayer in the oxide scales of oxidized hafnium carbide. The material was synthesized by pulsed laser deposition, using pure HfO2 targets in C2H2 background gas at low pressures. Stable films up to 700 nm thick and with high molar fractions (~0.1–0.45) of carbon were obtained. The predominant chemical bonding of Hf and O atoms is that of oxygen-deficient HfO2, while carbon is present in elemental or hydrogenated forms. Annealing at 600 °C leads to loss of most of the hydrogen from the films, which is accompanied by enhanced sp2 bonding of carbon. The films have amorphous, compact, and finely grained microstructure. Carbon molar fractions higher than ~0.2 inhibit microcrystallinity to at least 600 °C.  相似文献   

16.
We have deposited unhydrogenated and hydrogenated Si-incorporated DLC (Si-DLC) films by pulsed laser deposition using KrF excimer laser, and systematically examined the structure and the mechanical and tribological properties of the films. Hydrogenated Si-DLC films were prepared by atomic-hydrogen irradiation during deposition. The Si/(Si+C) ratio in DLC films increased by atomic-hydrogen irradiation during deposition, indicating that the hydrogen etching is more effective for C atoms compared with Si atoms. The formation of Si–C bonds in the films and silicon oxides only at the surfaces was confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. It was found that the atomic-hydrogen irradiation led to the formation of Si–H bonds to prevent the surface oxidation of the Si-DLC films. The scratch tests revealed that the critical loads of the films deposited with hydrogen were higher than those of the films deposited without hydrogen. We found that the moderately hydrogen-irradiated Si-DLC films tended to have higher wear resistance than the unhydrogenated Si-DLC films.  相似文献   

17.
Optimisation of femtosecond pulsed laser deposition parameters for the fabrication of silicon thin films is discussed. Substrate temperature, gas pressure and gas type are used to better understand the deposition process and optimise it for the fabrication of high-quality thin films designed for optical and optoelectronic applications.  相似文献   

18.
This paper presents the results, analysis and discussions of parametric studies of diamond-like carbon (DLC) thin films by pulsed Nd:YAG laser deposition. Effects on the DLC properties and growth rate were investigated by varying the deposition parameters, namely the laser wavelength and fluence, substrate and temperature. For characterization, visible Raman spectroscopy, current-voltage measurement, optical interferometry, and optical absorption technique were employed. Comparisons were made with previous work by other workers who had also employed pulsed Nd:YAG lasers. The results also supported the subplantation mechanism for DLC formation.  相似文献   

19.
《Ceramics International》2015,41(6):7439-7445
Highly (001)-oriented Cu2-ySe thin films with tunable thermoelectric performances have been grown by pulsed laser deposition. By using targets with different Cu/Se ratios that further determines the copper deficiency of as-grown films, the carrier concentrations of as-grown films are tuned within a broad range from 1018 to 1021 cm−3. The optimum performance is observed at carrier concentration ~1.58×1020 cm−3. The distinct properties of Cu2-ySe thin films with nearly ideal chemical stoichiometric ratio are observed. In addition, a weak change in the electrical transport during the second-order phase transition was observed in the thin films due to the anisotropic structure of the Cu2-ySe.  相似文献   

20.
The structure and electrical properties of nanostructured Al-doped ZnO (AZO)/ZnO bilayers grown as potential solar cell electrodes by pulsed laser deposition on (0001) sapphire substrates are investigated. Transmission and scanning electron microscopy and X-ray diffraction show a narrow temperature window around 350–450 °C where nanostructures are formed. 2-D mapping of electrical conductivity by tunnelling atomic force microscopy showed that these nanostructures provided low resistance pathways, but that the overall film resistivity increased for substrate temperatures above 350 °C. The reasons for this are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号