首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Salicylic acid (SA) and jasmonic acid (JA) are essential plant immune hormones, which could induce plant resistance to multiple pathogens. However, whether common components are employed by both SA and JA to induce defense is largely unknown. In this study, we found that the enhanced disease susceptibility 8 (EDS8) mutant was compromised in plant defenses to hemibiotrophic pathogen Pseudomonas syringae pv. maculicola ES4326 and necrotrophic pathogen Botrytis cinerea, and was deficient in plant responses to both SA and JA. The EDS8 was identified to be THO1, which encodes a subunit of the THO/TREX complex, by using mapping-by-sequencing. To check whether the EDS8 itself or the THO/TREX complex mediates SA and JA signaling, the mutant of another subunit of the THO/TREX complex, THO3, was tested. THO3 mutation reduced both SA and JA induced defenses, indicating that the THO/TREX complex is critical for plant responses to these two hormones. We further proved that the THO/TREX interacting protein SERRATE, a factor regulating alternative splicing (AS), was involved in plant responses to SA and JA. Thus, the AS events in the eds8 mutant after SA or JA treatment were determined, and we found that the SA and JA induced different alternative splicing events were majorly modulated by EDS8. In summary, our study proves that the THO/TREX complex active in AS is involved in both SA and JA induced plant defenses.  相似文献   

2.
Phloem-feeding whiteflies in the species complex Bemisia tabaci cause extensive crop damage worldwide. One of the reasons for their “success” is their ability to suppress the effectual jasmonic acid (JA) defenses of the host plant. However, little is understood about the mechanisms underlying whitefly suppression of JA-regulated defenses. Here, we showed that the expression of salicylic acid (SA)-responsive genes (EDS1 and PR1) in Arabidopsis thaliana was significantly enhanced during feeding by whitefly nymphs. Whereas upstream JA-responsive genes (LOX2 and OPR3) also were induced, the downstream JA-responsive gene (VSP1) was repressed, i.e., whiteflies only suppressed downstream JA signaling. Gene-expression analyses with various Arabidopsis mutants, including NahG, npr-1, ein2-1, and dde2-2, revealed that SA signaling plays a key role in the suppression of downstream JA defenses by whitefly feeding. Assays confirmed that SA activation enhanced whitefly performance by suppressing downstream JA defenses.  相似文献   

3.
Plants have evolved a sophisticated defense system that employs various hormone pathways to defend against attacks by insect pests. Cytokinin (CK) plays an important role in plant growth and stress tolerance, but the role of CKs in plant–insect interaction remains largely unclear. Here, we report that CKs act as a positive regulator in rice resistance against brown planthopper (BPH), a devastating insect pest of rice. We found that BPH feeding promotes CK biosynthesis and signaling in rice. Exogenous application of CKs significantly increased the rice resistance to BPH. Increasing endogenous CKs by knocking out cytokinin oxidase/dehydrogenase (OsCKXs) led to enhanced resistance to BPH. Moreover, the levels of the plant hormone jasmonic acid (JA) and the expression of JA-responsive genes were elevated by CK treatment and in OsCKXs knockout plants. Furthermore, JA-deficient mutant og1 was more susceptible to BPH, and CK-induced BPH resistance was suppressed in og1. These results indicate that CK-mediated BPH resistance is JA-dependent. Our findings provide the direct evidence for the novel role of CK in promoting insect resistance, and demonstrate that CK-induced insect resistance is JA-dependent. These results provide important guidance for effective pest management strategies in the future.  相似文献   

4.
Symptomless ‘type II’ fungal endophytes colonize their plant host horizontally and exert diverse effects on its resistance phenotype. Here, we used wild Lima bean (Phaseolus lunatus) plants that were experimentally colonized with one of three strains of natural endophytes (Bartalinia pondoensis, Fusarium sp., or Cochliobolus lunatus) to investigate the effects of fungal colonization on the endogenous levels of salicylic acid (SA) and jasmonic acid (JA) and on two JA-dependent indirect defense traits. Colonization with Fusarium sp. enhanced JA levels in intact leaves, whereas B. pondoensis suppressed the induction of endogenous JA in mechanically damaged leaves. Endogenous SA levels in intact leaves were significantly decreased by all strains and B. pondoensis and Fusarium sp. decreased SA levels after mechanical damage. Colonization with Fusarium sp. or C. lunatus enhanced the number of detectable volatile organic compounds (VOCs) emitted from intact leaves, and all three strains enhanced the relative amount of several VOCs emitted from intact leaves as well as the number of detectable VOCs emitted from slightly damaged leaves. All three strains completely suppressed the induced secretion of extrafloral nectar (EFN) after the exogenous application of JA. Symptomless endophytes interact in complex and strain-specific ways with the endogenous levels of SA and JA and with the defense traits that are controlled by these hormones. These interactions can occur both upstream and downstream of the defense hormones.  相似文献   

5.
6.
Plants cannot avoid being attacked by an almost infinite number of microorganisms and insects. Consequently, they arm themselves with molecular weapons against their attackers. Plant defense responses are the result of a complex signaling network, in which the hormones jasmonic acid (JA), salicylic acid (SA) and ethylene (ET) are the usual suspects under the magnifying glass when researchers investigate host-pest interactions. However, Green Leaf Volatiles (GLVs), C6 molecules, which are very quickly produced and/or emitted upon herbivory or pathogen infection by almost every green plant, also play an important role in plant defenses. GLVs are semiochemicals used by insects to find their food or their conspecifics. They have also been reported to be fundamental in indirect defenses and to have a direct effect on pests, but these are not the only roles of GLVs. These volatiles, being probably one of the fastest weapons exploited, are also able to directly elicit or prime plant defense responses. Moreover, GLVs, via crosstalk with phytohormones, mostly JA, can influence the outcome of the plant’s defense response against pathogens. For all these reasons GLVs should be considered as co-protagonists in the play between plants and their attackers.  相似文献   

7.
Plants are defended from attack by emission of volatile organic compounds (VOCs) that can act directly against pathogens and herbivores or indirectly by recruiting natural enemies of herbivores. However, microbial VOC have been less investigated as potential triggers of plant systemic defense responses against pathogens in the field. Bacillus amyloliquefaciens strain IN937a, a plant growth-promoting rhizobacterium that colonizes plant tissues, stimulates induced systemic resistance (ISR) via its emission of VOCs. We investigated the ISR capacity of VOCs and derivatives collected from strain IN937a against bacterial spot disease caused by Xanthomonas axonopodis pv. vesicatoria in pepper. Of 15 bacterial VOCs and their derivatives, 3-pentanol, which is a C8 amyl alcohol reported to be a component of sex pheromones in insects, was selected for further investigation. Pathogens were infiltrated into pepper leaves 10, 20, 30, and 40 days after treatment and transplantation to the field. Disease severity was assessed 7 days after transplantation. Treatment with 3-pentanol significantly reduced disease severity caused by X. axonopodis and naturally occurring Cucumber mosaic virus in field trials over 2 years. We used quantitative real-time polymerase chain analysis to examine Pathogenesis-Related genes associated with salicylic acid (SA), jasmonic acid (JA), and ethylene defense signaling. The expression of Capsicum annuum Pathogenesis-Related protein 1 (CaPR1), CaPR2, and Ca protease inhibitor2 (CaPIN2) increased in field-grown pepper plants treated with 3-pentanol. Taken together, our results show that 3-pentanol triggers induced resistance by priming SA and JA signaling in pepper under field conditions.  相似文献   

8.
Leptosphaeria maculans causes blackleg disease, which is one of the most destructive diseases of canola (Brassica napus L.). Due to the erosion of the current resistance in B. napus, it is pivotal to introduce new resistant genotypes to the growers. This study evaluated the potential of Rlm7 gene as resistance to its corresponding avirulence AvrLm7 gene is abundant. The Rlm7 line was inoculated with L. maculans isolate with AvrLm7; UMAvr7; and the CRISPR/Cas9 knockout AvrLm7 mutant, umavr7, of the same isolate to cause incompatible and compatible interactions, respectively. Dual RNA-seq showed differential gene expressions in both interactions. High expressions of virulence-related pathogen genes-CAZymes, merops, and effector proteins after 7-dpi in compatible interactions but not in incompatible interaction—confirmed that the pathogen was actively virulent only in compatible interactions. Salicyclic and jasmonic acid biosynthesis and signaling-related genes, defense-related PR1 gene (GSBRNA2T00150001001), and GSBRNA2T00068522001 in the NLR gene family were upregulated starting as early as 1- and 3-dpi in the incompatible interaction and the high upregulation of those genes after 7-dpi in compatible interactions confirmed the early recognition of the pathogen by the host and control it by early activation of host defense mechanisms in the incompatible interaction.  相似文献   

9.
10.
11.
Gibberella stalk rot (GSR) by Fusarium graminearum causes significant losses of maize production worldwide. Jasmonates (JAs) have been broadly known in regulating defense against pathogens through the homeostasis of active JAs and COI-JAZ-MYC function module. However, the functions of different molecular species of JAs and COI-JAZ-MYC module in maize interactions with Fusarium graminearum and regulation of diverse metabolites remain unknown. In this study, we found that exogenous application of MeJA strongly enhanced resistance to GSR. RNA-seq analysis showed that MeJA activated multiple genes in JA pathways, which prompted us to perform a genome-wide screening of key JA signaling components in maize. Yeast Two-Hybrid, Split-Luciferase, and Pull-down assays revealed that the JA functional and structural mimic coronatine (COR) functions as an essential ligand to trigger the interaction between ZmCOIa and ZmJAZ15. By deploying CRISPR-cas9 knockout and Mutator insertional mutants, we demonstrated that coi1a mutant is more resistant, whereas jaz15 mutant is more susceptible to GSR. Moreover, JA-deficient opr7-5opr8-2 mutant displayed enhanced resistance to GSR compared to wild type. Together, these results provide strong evidence that ZmJAZ15 plays a pivotal role, whereas ZmCOIa and endogenous JA itself might function as susceptibility factors, in maize immunity to GSR.  相似文献   

12.
13.
Jasmonic acid (JA) and salicylic acid (SA) are key molecules in the initiation of plant defensive responses to attack by herbivores and pathogens, respectively. Our previous work has shown that JA occurs at high concentrations in eggs and neonates of lepidopteran species. Here, we extend our analyses to eggs of 15 non-lepidopteran insect species spanning eight orders, again screening for JA, but also including SA and one of its metabolic precursors, benzoic acid. We detected all three compounds in eggs of almost all the species examined. Moreover, concentrations of these compounds were variable across species, suggesting that species accumulate and/or utilize the compounds differently. Eggs of the fruit-feeding fly Rhagoletis pomonella contained the greatest concentrations of all three compounds, which appear to be common in fruit. The presence of these plant-derived compounds in eggs may serve defensive or other functions for insects, and could conceivably trigger plant defensive responses after oviposition.  相似文献   

14.
Salicylic acid (SA) generally is thought to suppress jasmonic acid (JA) related signaling events. However, when we treated the roots of corn seedlings overnight with low physiological concentrations of SA (50 μM), we found a priming effect of this pretreatment on typical insect elicitor (IE)-induced responses in the leaves of these plants. IE-induced JA was more than 2-fold up regulated in SA-pretreated plants. Consequently, IE-induced volatile organic compounds (VOC) release also was significantly increased. In contrast, when corn seedlings were treated with SA overnight and then mechanically damaged, we found no significant differences in JA accumulation. We also found that the application of even lower concentrations of SA (5 μM) had no significant effect on IE-induced responses, while higher concentrations (500 μM) inhibited IE-induced JA accumulation. Likewise, shorter exposure to SA did not affect subsequent JA accumulation induced by IE or mechanical wounding. These results provide evidence for the existence of non-compatible defense priming by signaling molecules that usually are involved in a conflictive defense signaling pathway and suggests common elements in the regulation of priming plant defense responses.  相似文献   

15.
Lesion mimic mutants (LMMs) have been widely used in experiments in recent years for studying plant physiological mechanisms underlying programmed cell death (PCD) and defense responses. Here, we identified a lesion mimic mutant, lm212-1, which cloned the causal gene by a map-based cloning strategy, and verified this by complementation. The causal gene, OsPHD1, encodes a UDP-glucose epimerase (UGE), and the OsPHD1 was located in the chloroplast. OsPHD1 was constitutively expressed in all organs, with higher expression in leaves and other green tissues. lm212-1 exhibited decreased chlorophyll content, and the chloroplast structure was destroyed. Histochemistry results indicated that H2O2 is highly accumulated and cell death is occurred around the lesions in lm212-1. Compared to the wild type, expression levels of defense-related genes were up-regulated, and resistance to bacterial pathogens Xanthomonas oryzae pv. oryzae (Xoo) was enhanced, indicating that the defense response was activated in lm212-1, ROS production was induced by flg22, and chitin treatment also showed the same result. Jasmonic acid (JA) and methyl jasmonate (MeJA) increased, and the JA signaling pathways appeared to be disordered in lm212-1. Additionally, the overexpression lines showed the same phenotype as the wild type. Overall, our findings demonstrate that OsPHD1 is involved in the regulation of PCD and defense response in rice.  相似文献   

16.
UV-Induced Cell Death in Plants   总被引:1,自引:0,他引:1  
Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).  相似文献   

17.
Costs of jasmonic acid (JA) induced plant defense have gained increasing attention. In this study, JA was applied continuously to the aboveground (AG) or belowground (BG) parts, or AG plus BG parts of corn (Zea mays L.) to investigate whether JA exposure in one part of the plant would affect defense responses in another part, and whether or not JA induced defense would incur allocation costs. The results indicated that continuous JA application to AG parts systemically affected the quantities of defense chemicals in the roots, and vice versa. Quantities of DIMBOA and total amounts of phenolic compounds in leaves or roots generally increased 2 or 4?wk after the JA treatment to different plant parts. In the first 2?wk after application, the increase of defense chemicals in leaves and roots was accompanied by a significant decrease of root length, root surface area, and root biomass. Four weeks after the JA application, however, no such costs for the increase of defense chemicals in leaves and roots were detected. Instead, shoot biomass and root biomass increased. The results suggest that JA as a defense signal can be transferred from AG parts to BG parts of corn, and vice versa. Costs for induced defense elicited by continuous JA application were found in the early 2?wk, while distinct benefits were observed later, i.e., 4?wk after JA treatment.  相似文献   

18.
19.
20.
The first line of plant defence responses against pathogens can be induced by the bacterial flg22 and can be dependent on various external and internal factors. Here, we firstly studied the effects of daytime and ethylene (ET) using Never ripe (Nr) mutants in the local and systemic defence responses of intact tomato plants after flg22 treatments. Flg22 was applied in the afternoon and at night and rapid reactions were detected. The production of hydrogen peroxide and nitric oxide was induced by flg22 locally, while superoxide was induced systemically, in wild type plants in the light period, but all remained lower at night and in Nr leaves. Flg22 elevated, locally, the ET, jasmonic acid (JA) and salicylic acid (SA) levels in the light period; these levels did not change significantly at night. Expression of Pathogenesis-related 1 (PR1), Ethylene response factor 1 (ERF1) and Defensin (DEF) showed also daytime- and ET-dependent changes. Enhanced ERF1 and DEF expression and stomatal closure were also observable in systemic leaves of wild type plants in the light. These data demonstrate that early biotic signalling in flg22-treated leaves and distal ones is an ET-dependent process and it is also determined by the time of day and inhibited in the early night phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号