首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
作为一种气体植物激素和大气污染物,微量乙烯的催化燃烧脱除具有重要意义。以三维网状结构的铝纤维片(Al-fiber)作为骨架基体,借助水溶性硅烷偶联剂(4-二乙氧基甲基甲硅烷基丁胺)的双向桥联作用,实现整装式Ag@SiO2-Co3O4/Al-fiber类核-壳结构催化剂的宏-微-纳一体化组装。通过催化剂对比实验和动力学实验表明,新颖制备方法所构建的Ag@SiO2-Co3O4类核-壳结构能够显著降低表观活化能,提高催化性能。  相似文献   

2.
氧化物在电催化析氢反应中具有广阔的应用前景。以Na F和KNO3的混合盐为反应介质,以Co Cl3和Fe Cl3为原料,通过熔盐法于350℃煅烧2 h便可制得Fe2O3-Co3O4异质结构,并将其用于绿色制氢。借助X射线衍射、扫描电子显微镜、透射电子显微镜、X射线光电子能谱分析样品的微观形貌、物相结构和电子结构信息,验证了Fe2O3和Co3O4之间存在有效耦合。Fe2O3可使催化剂表面粗糙,大幅增加活性比表面积。此外,Fe2O3和Co3O4之间存在电子相互作用,Fe2O3向Co3O4提供电子,降低Co原子的价态,大大提升了Fe  相似文献   

3.
以MMT为载体,采用原位聚合-配位沉积法制备3种不同Co负载量的Co3O4-MMT催化剂。采用N2物理吸附、XRD和TEM对载体和催化剂进行表征,并在连续流动微反装置上考察其N2O催化分解性能。结果表明,与Co3O4催化剂相比,Co3O4-MMT催化剂的比表面积显著增大,且活性组分Co3O4具有较高的分散状态。Co3O4-MMT催化剂的催化活性随着Co含量的增加先升后降,其中0.015Co-MMT表现出最佳的催化活性,其活性远高于Co3O4催化剂,同时,该催化剂还表现出良好的催化稳定性和较好的杂质气体耐受性。  相似文献   

4.
以Co(NO3)2·6H2O和尿素为原料制备了9种Co3O4催化材料,考察了其对水中酮基布洛芬(KTP)的催化臭氧氧化降解效能。结果表明,与单独臭氧氧化相比,所制备的Co3O4对水中KTP的催化臭氧氧化降解率提高了12.0%~63.8%,且在n[Co(NO3)2·6H2O]:n(尿素)=4:1、煅烧温度400℃下制备得到的Co3O4催化剂催化活性最高。SEM、XRD、FTIR、XPS、BET等表征分析显示,该Co3O4催化剂表面呈覆盖细小微粒的球状颗粒,晶相为立方相,且表面含有丰富的羟基,表面羟基密度为1.075×10-5 mol/m2。机理研究证实,Co3O4对水中KTP的非均相催化臭氧氧化降解...  相似文献   

5.
为提升析氧电极催化性能及使用寿命,通过热解法制备了Co改性的Ti/IrO2-Co3O4-SnO2-Sb2O5四元氧化物电极。采用极化曲线(LSV)、循环伏安曲线(CV)、交流阻抗图谱(EIS)及加速寿命实验研究了电极在硫酸溶液中的析氧催化活性及稳定性。结果表明,随着Co摩尔分数的增大,涂层表面的粗糙度先降低后升高,而电极的析氧活性及加速寿命均先升高后降低;当Co摩尔分数为50%时电极催化活性最佳,而当Co摩尔分数为30%时电极寿命最长,与Ti/IrO2-SnO2-Sb2O5电极相比寿命提高了约76.7%。电化学测试结果表明,Co改性电极催化活性的提高得益于反应控速步骤的改变、涂层表面反应位点数量的增大及电化学反应阻抗的降低。  相似文献   

6.
本文以硝酸钴和氯化铁为主要原料制备了Fe2O3∕CoFe2O4复合光催化材料。利用X射线衍射仪(XRD)和紫外-可见吸收光谱(UV-VIS)对样品的结构和光吸收性能进行了表征。并在可见光照射下,通过催化降解罗丹明B(RHB)溶液考察各催化材料的催化效果。结果表明,制备的复合催化材料是以CoFe2O4为主的面心立方尖晶石结构。在反应时间为8.5 h、反应温度为135℃和煅烧温度为500℃时,制备的Fe2O3复合量为3%的复合催化剂性能最好,光催化降解2 h后,罗丹明B降解率可达到96.62%。  相似文献   

7.
沈海丽  夏强  廖小刚  李纲  田甜  李红梅 《精细化工》2023,40(6):1366-1375+1385
以Na2S2O3为硫源,采用改进的草酸盐-热解法制备了一系列硫修饰的Co3O4多孔催化剂[Sx@Co3O4,x=0.25、0.50、0.75、1,x为硫的修饰量,以Co(NO3)2·6H2O的物质的量为基准,下同]。以亚甲基蓝(MB)为降解模型,考察了不同催化剂活化过一硫酸盐(PMS)的性能。探讨了催化剂用量、PMS浓度、反应温度、常见阴离子种类在Sx@Co3O4-PMS体系下对MB降解率的影响,并评价了催化剂的循环稳定性。结果表明,随着硫修饰量的增加,Co3O4的催化性能逐渐升高,S1@Co3O4表现出最佳的催化性能。硫元素以SO42–  相似文献   

8.
氮氮键化合物广泛存在于天然产物、精细化学品和光功能材料的结构中,因此氮氮偶联是精细有机合成中重要的反应。本文利用溶剂热法制备了系列MnCo2O4催化剂。润湿性研究表明,调变Mn/Co显著改变MnCo2O4催化剂的亲疏水性。在温和的反应条件下,研究了MnCo2O4催化剂的催化性能。结果表明,疏水性MnCo2O4催化剂对苯胺氧化偶联制偶氮苯呈现优异的催化性能,且催化剂经多次循环使用后仍具有较高的催化活性。由此可见,疏水性MnCo2O4在偶氮苯合成领域具有良好的工业化应用前景。  相似文献   

9.
采用等体积浸渍法制备一系列Co负载量不同的Co/Al2O3催化剂,用于乙酰丙酸液相催化加氢制γ-戊内酯反应。采用X射线衍射仪和透射电镜对Co/Al2O3催化剂进行表征,考察Co负载量、反应温度、反应压力和催化剂用量等对乙酰丙酸液相催化加氢反应的影响。结果表明,在Co负载质量分数15%、反应温度140 ℃、反应压力4.0 MPa和催化剂用量为反应物总质量的20%条件下,以甲醇为溶剂,反应6 h,乙酰丙酸转化率100%,γ-戊内酯选择性80.4%。催化剂重复使用6次仍具有较好的催化性能。  相似文献   

10.
以异丙醇铝与磷酸为原料,离子液体1-丁基-3-甲基咪唑溴盐([Bmim]Br)与二正丙胺为共模板剂合成了Al PO4,进而采用水热法将V2O5负载于Al PO4载体制备了VOx/Al PO4催化剂。采用XRD、SEM、TEM、Mapping、FTIR、N2吸附-脱附、XPS对催化剂进行了表征,考察了其在苯羟基化反应中的催化性能。结果表明,钒氧化物负载量为16%(以V2O5和Al PO4的总质量为基准,下同)的催化剂具有最多且分布均匀的V4+活性中心、契合反应的酸性微环境,在催化剂用量为0.2 g,苯用量4 mL,质量分数30%的H2O2用量12.5 mL,乙腈用量15 mL,反应温度70℃,反应时间7 h的条件下,苯转化率为53.4%,苯酚选择性为98.4%。基于催化剂表征分析及性能评估,推测催化反应机理...  相似文献   

11.
非均相催化甲苯二胺(TDA)焦油重组分降解是资源化利用的新途径。本文采用离子交换-焙烧法制备了Fe2O3/硅藻土非均相Fenton催化,并通过SEM、XRD和EDS等手段对催化剂微观结构进行表征。探究了Fe2O3/硅藻土催化剂催化TDA焦油重组份降解的性能,结果表明:硅藻土对TDA焦油具有吸附优势,且Fe2O3能够均匀分散于硅藻土表面而实现对TDA焦油的可控高效降解。在1g 0.5%Fe催化剂,[m(Fe2O3/硅藻土催化剂):m(30%H2O2)]=1:6,20℃,pH=4.5,反应时间2h条件下,焦油分解得到TDA最多,产率为71.79%。  相似文献   

12.
以CeO2-Al2O3为载体,采用等体积浸渍法制备CuO-Co3O4-CeO2/CeO2-Al2O3催化剂,通过X射线衍射(XRD)、氢气程序升温还原(H2-TPR)、氢气等温还原(H2-TIR)、CO脱除性能评价等方法,考察预还原温度、反应温度、液相空速对CO脱除性能的影响。结果表明:催化剂在160℃下预还原可以获得37.3%的还原度,有效提高活性Cu+的数量,进而提高CO脱除性能;在液相丙烯中微量CO脱除反应中,反应温度升高、液相空速减小有利于提高CO脱除性能,当反应温度不低于50℃,液相空速不高于8 h-1时,CO体积分数可脱除至0.03 mL/m3以下。在50℃、3 MPa,液相空速为8 h-1的反应条件下,CuO-Co3O  相似文献   

13.
将A5微孔分子筛浸渍于偏钒酸铵溶液,过滤,120 ℃干燥2 h,550 ℃焙烧6 h,制备了含有V2O5的A5微孔分子筛催化剂。采用X射线衍射、N2吸附-脱附和扫描电镜等进行表征,并将其用于以H2O2为氧化剂、乙酸酐为溶剂的对硝基甲苯催化氧化生成对硝基苯甲醇的反应。在反应温度40 ℃和反应时间4 h条件下,以质量分数35%的H2O2为氧化剂和V2O5质量分数8.5%的V2O5/A5为催化剂,能够获得较好的对硝基甲苯转化率(35.54%)和较高的对硝基苯甲醇选择性(67.16%)。反应结束后,在母液中通过电感耦合等离子体原子光谱仪没有检测到V2O5。V2O5/A5催化剂连续使用3次,对硝基甲苯转化率为34.21%,对硝基苯甲醇选择性为63.39%,催化剂活性无明显降低。  相似文献   

14.
在还原过程中,非负载型钴基催化剂堆积孔结构容易坍塌,从而使金属钴的比表面积大幅降低,活性中心暴露的数量减少。作者采用简单的水热法制备了Co(OH)2/Co3O4混合物相的非负载型钴纳米颗粒催化剂,用于费托合成反应性能研究。结果表明:相比于单一物相的Co(OH)2或Co3O4催化剂,混合物相的催化剂显示出更高的费托合成反应活性。XRD、TEM、BET、H2-TPR等表征方法揭示出Co(OH)2与Co3O4具有不同的还原性质,两者紧密结合有利于催化剂在还原后维持更大的比表面积,进而有利于更多活性位点暴露,显著提高催化剂的反应活性。  相似文献   

15.
在氧化还原法制备α-MnO2的基础上,通过控制焙烧温度和气氛制备了Mn3O4催化剂,系统考察了其甲苯催化性能。结果显示,Mn3O4催化性能优于MnO2,并且在230℃下保持转化率90%以上稳定运行100 h。原位红外等表征结果表明,与MnO2相比,Mn3O4具有适当的氧化还原能力、更高的晶格氧活性、更多的表面吸附氧和更强的甲苯吸附能力,促使催化剂表面苯甲酸物种的快速转化,进而提高其甲苯催化性能。本研究可为锰基催化剂的制备及其甲苯催化氧化性能提升机理研究提供参考。  相似文献   

16.
以溶胶-凝胶法制备的TiO2粉末为载体,偏钒酸铵和水合钨酸铵溶液为浸渍液,采用分步浸渍法制备了V2O5-WO3-TiO2催化剂,以聚乙烯醇-硅溶胶为黏合剂,采用涂覆法将催化剂粘合于经硫酸和钛酸丁酯溶胶处理过的不锈钢板板材表面,获得不锈钢板负载的V2O5-WO3-TiO2催化剂。采用XRD、FT-IR和SEM等表征手段对催化剂进行表征,结果表明,V2O5-WO3-TiO2催化剂可均匀负载于不锈钢板表面。采用氨选择性催化还原氮氧化物法研究了催化剂的脱硝性能,结果表明,在空速8 000 L·(kg·h)-1和反应温度360 ℃的条件下,NOx脱除率超过92%,且制备的催化剂具有良好的稳定性和耐硫性。  相似文献   

17.
煤焦化过程中产生大量酚-氰-硫氰酸盐等组分复杂的工业废水,对水体生态环境具有潜在危害,研究高效的含硫氰酸盐废水处理技术具有积极的经济、环保意义。以焦粉固废为碳源,采用等体积浸渍,结合限热碳还原法制备磁性Fe3O4/C材料,采用XRD和N2吸附-脱附技术进行物质结构表征,并应用于诱导铜盐化学沉淀法脱除模拟焦化废水中硫氰酸盐。XRD结果表明,负载的Fe3O4平均晶粒尺寸为10.8 nm, Fe3O4/C材料比表面积6.8 m2·g-1。模拟焦化硫氰酸盐废水(浓度为2.5 g·L-1)处理实验结果显示,在铜盐浓度为0.03 mol·L-1时,采用铁质量分数20%Fe3O4/C催化剂(投加量1.25 g),废水初始pH=5.6,45℃下反应2 h,硫氰酸盐脱除率可达99.84%,催化剂稳定性良好;动力学模拟显示反...  相似文献   

18.
利用废弃小麦秸秆为原料,通过离子液体法制备了小麦秸秆纤维素基水凝胶(SCH),合成了磁性秸秆纤维素基水凝胶负载Fe3O4(SCH@Fe3O4)催化剂。将SCH@Fe3O4催化剂经原位固定铜离子和化学还原法合成了原位负载的SCH@Fe3O4/Cu催化剂,并研究了该催化剂活化NaBH4催化还原硝基苯甲酸(NA)的性能。同时,优化了催化剂投加量、NaBH4投加量、NA初始浓度和反应温度对NA催化还原效果的影响。SCH@Fe3O4/Cu催化剂活化NaBH4还原NA的性能优于商品纳米零价铁,该过程能够抵抗水体背景阴离子的干扰,具有优异的稳定性。此外,SCH@Fe3O4/Cu催化剂饱和磁化强度为13.1 emu/g,说明其具有强磁性,易于从水体中分离,实现催化剂的回收利用。...  相似文献   

19.
V2O5-MoO3/TiO2 催化剂的NOx选择性催化还原及SO2氧化活性   总被引:2,自引:0,他引:2  
采用浸渍法以TiO2为载体制备V2O5-MoO3/TiO2 选择性催化还原催化剂,研究V2O5和MoO3负载量对于催化剂选择性催化还原反应及SO2氧化活性的影响,并考察氧含量、氨氮物质的量比和反应空速对3%V2O5-6%MoO3/TiO2催化剂选择性催化还原脱硝活性的影响。结果表明,随着催化剂中V2O5负载质量分数增加,V2O5-MoO3/TiO2 催化剂的选择性催化还原活性和SO2氧化活性均呈上升趋势。MoO3的负载对催化剂的SO2氧化活性有明显抑制作用。MoO3负载质量分数超过9%,制备的催化剂既保持较高的低温选择性催化还原活性,又使选择性催化还原反应中的SO2转化率小于1%。  相似文献   

20.
为阐明H2O2/Fe2(MoO4)3体系脱硝过程中H2O2吸附分解及NO氧化行为,基于DFT方法首次计算了H2O2和NO分子单独及二者同时在Fe2(MoO4)3表面的吸附构型,并通过考察吸附能、Mulliken电荷及氧化路径等特性揭示H2O2催化分解和NO氧化的微观机制。结果表明:H2O2在Fe2(MoO4)3表面易分解为活性自由基,而NO则以分子形式吸附;H2O2和NO共吸附时,H2O2优先吸附于催化剂表面并随后分解,NO则分别被H2O2分解产...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号