首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large-area, uniform, transparent amorphous carbon (a-C) thin films were synthesized through simple chemical vapor deposition using coal as the solid carbon source. The atomic force microscopy characterization showed that the synthesized carbon thin film has ∼5 nm thickness with ∼0.55 nm surface roughness. The optical transmittance spectrum showed that the carbon thin film has >96% optical transmittance over the spectral range from 350 nm to 900 nm. The carbon thin films can be transferred to various substrates, which show promise for applications in solar cell, optical and magnetic storage disks, light emitting diodes, photodiodes, and biomedical implants.  相似文献   

2.
The present work evaluates the effects of plasma power and oxygen mixing ratios (OMRs) on structural, morphological, optical, and electrical properties of strontium titanate SrTiOx (STO) thin films. STO thin films were grown by magnetron sputtering, and later thermal annealing at 700°C for 1 h was applied to improve film properties. X-ray diffraction analysis indicated that as-deposited films have amorphous microstructure independent of deposition conditions. The films deposited at higher OMR values and later annealed also showed amorphous structure while the films deposited at lower OMR value and annealed have nanocrystallinity. In addition, all as-deposited films were highly transparent (~80%–85%) in the visible spectrum and exhibited well-defined main absorption edge, while the annealing improved transparency (90%) within the same spectrum. The calculated direct and indirect optical band gaps for films were in the range of 3.60-4.30 eV as a function of deposition conditions. The refractive index of the films increased with OMRs and the postdeposition annealing. The frequency dependent capacitance measurements at 100 kHz were performed to obtain film dielectric constant values. High dielectric constant values reaching up to 100 were obtained. All STO samples exhibited more than 2.5 μC/cm2 charge storage capacity and low dielectric loss (less than 0.07 at 100 kHz). The leakage current density was relatively low (3 × 10−8Acm−2 at +0.8 V) indicating that STO films are promising for future dynamic random access memory applications.  相似文献   

3.
《Ceramics International》2017,43(5):4280-4287
High quality smooth, uniform and crack-free ceria and gadolinium doped ceria (GDC) thin films were prepared on Si and Si/YSZ substrates by chemical solution deposition. The thermal behavior of Gd-Ce-O precursor was investigated by TG-DSC measurements. The phase purity and structure of deposited films were evaluated using X-ray diffraction (XRD) analysis and Raman spectroscopy. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed for the estimation of surface morphological features. Oxidation state of Ce ions in fabricated films was analyzed by X-ray photoelectron spectroscopy (XPS). Optical properties were evaluated by diffuse reflectance UV–vis spectrometry. Thickness of the films can be controlled by applying a certain number of spin coating cycles. A linear relation between the thickness of the films and the number of deposited layers was observed. The single-layer thickness was determined to be approximately 20 nm. The influence of annealing temperature and Gd content on the film structure, morphology and optical properties was studied and discussed. The dependence of an optical band gap as a function of grain size was demonstrated.  相似文献   

4.
《Ceramics International》2022,48(11):15380-15389
In the present study, the effect of thermal annealing on structural, linear, and nonlinear optical properties of quaternary chalcogenide In15Ag10S15Se60 thin film has been reported. The bulk sample synthesized by the melt quenching technique was used for the thin film preparation by the thermal evaporation method. Post deposition, the thin films were annealed at different temperatures like 100 °C, 150 °C, 200 °C, and 250 °C for 2 hs. X-ray diffraction (XRD) and Raman spectroscopy were used for structural studies, which showed the increase in crystalline phases with the increase of annealing temperature. The morphological images taken by field emission scanning electron microscope (FESEM) showed the densification and enlargement of scattered grains for annealed films. Furthermore, the constituent elements and their percentage in the sample were confirmed by Energy dispersive X-ray analysis (EDX). The linear and nonlinear optical parameters were calculated from the transmittance data obtained from UV–Vis spectroscopy in the wavelength range of 600–1100 nm. There is a large reduction in third-order nonlinear susceptibility at the higher annealing temperature. Subsequently, the transmission increased, whereas the absorption decreased with the annealing temperature. The extinction coefficient decreased while there was an increase in optical bandgap for the annealed films due to the decrease in surface defects and disorder, which forms the localized states in the bandgap. The oscillator energy, dispersion energy, dielectric constant, optical conductivity were calculated and discussed in detail. The change in both linear and nonlinear parameters by thermal annealing could be useful for controlling the optical properties of In15Ag10S15Se60 thin film, which could be the preferable candidate for numerous photonic applications.  相似文献   

5.
Zinc tin oxide (ZTO) thin films can be deposited by atomic layer deposition (ALD) with adjustable electrical, optical and structural properties. However, the ternary ALD processes usually suffer from low growth rate and difficulty in controlling film thickness and elemental composition, due to the interaction of ZnO and SnO2 processes. In this work, ZTO thin films with different Sn levels are prepared by ALD super cycles using diethylzinc, tetrakis(dimethylamido)tin, and water. It is observed that both the film growth rate and atom composition show nonlinear variation versus [Sn]/([Sn]+[Zn]) cycle ratio. The experimental thickness measured by spectroscopic ellipsometry and X-ray reflectivity are much lower than the expected thickness linearly interpolated from pure ZnO and SnOx films. The [Sn]/([Sn]+[Zn]) atom ratios estimated by X-ray photoelectron spectroscopy have higher values than that expected from the cycle ratios. Hence, to characterize the film growth behavior versus cycle ratio, a numerical method is proposed by simulating the effect of reduced density and reactivity of surface hydroxyls and surface etching reactions. The structure, electrical and optical properties of ZTO with different Sn levels are also examined by X-ray diffraction, atomic force microscope, Hall measurements and ultraviolet–visible–infrared transmittance spectroscopy. The ZTO turns out to be transparent nanocrystalline or amorphous films with smooth surface. With more Sn contents, the film resistivity gets higher (>1 Ω cm) and the optical bandgap rises from 3.47 to 3.83 eV.  相似文献   

6.
Ultrananocrystalline diamond (UNCD)/amorphous carbon (a-C) composite thin films were grown in ambient hydrogen by pulsed laser deposition using a graphite target, and their optical properties were determined by optical absorption spectroscopy and Raman scattering spectroscopy. Three optical bandgaps exist. Two bandgaps are indirect and their values were estimated to be 1.0 eV and 5.4 eV; these bandgaps correspond to the a-C surrounding the UNCDs and the UNCDs respectively. The third bandgap is direct and has a value of 2.2 eV, which significantly contributes to a large absorption coefficient, (106 cm 1 at 3.0 eV). Possible origins of the third bandgaps are the grain boundaries (GBs) between the UNCDs and the a-C since they are specific to the UNCD/a-C composite films. The infrared absorption spectrum and the Raman scattering spectrum revealed the incorporation of hydrogen in the GBs. The hydrogen incorporated in the GBs might also have some influence on the appearance of the direct bandgap and its value.  相似文献   

7.
The influence on the thermal diffusivity of the changes induced on the macromolecular network of an epoxy-amine system by different hardener/resin ratios was experimentally investigated. For each hardener/resin ratio, the open photoacoustic cell technique was used to measure the thermal diffusivity. The thermal diffusivity data was correlated with the evolution of the characteristic infrared absorption bands of the epoxy and amine components using a fast Fourier transform spectrometer. The results show a sharp transition in the thermal diffusivity values at the beginning of the amine-rich domain, corresponding to a transformation from a rigid network to an amine saturated deformable structure. It is concluded that the open photoacoustic cell technique can be a useful monitoring tool for structural characterization and molecular evolution during the curing of this kind of system. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1335–1341, 1998  相似文献   

8.
《Ceramics International》2020,46(11):18716-18724
Chemical bath deposition (CBD) method was used to deposit CdS thin films on soda-lime glass substrates by using n-methylthiourea (NTU) as an alternative sulphur source and were compared to typical thiourea (TU) precursor. The sulphur source concentration was varied from 0.01 M to 0.1 M and the impact on the microstructural, surface morphology, optical and electrical properties of the grown films were studied. Increasing n-methylthiourea concentration in the precursor yielded thinner films that are less than 100 nm thickness, surface morphology with average surface roughness of 6.4 nm, larger granular structure, wider band gap at 2.3 eV–2.6 eV range. Raman spectroscopy revealed Raman peak at 303 cm-1. In contrast, an increase in thiourea concentration resulted in thinner amorphous films, less distinct granular structure, narrower energy band gap from 2.3 eV to 2.4 eV and a resonance Raman peak at 302 cm-1. CdS thin film deposited from n-methylthiourea precursor at higher precursor concentration of 0.1 M showed better electrical properties such as lower resistivity and higher carrier mobility compared to the thin film deposited from typical thiourea precursor.  相似文献   

9.
Diamond like carbon (DLC) thin films were deposited on p-type silicon (p-Si), quartz and ITO substrates by microwave (MW) surface-wave plasma (SWP) chemical vapor deposition (CVD) at different substrate temperatures (RT ∼ 300 °C). Argon (Ar: 200 sccm) was used as carrier gas while acetylene (C2H2: 20 sccm) and nitrogen (N: 5 sccm) were used as plasma source. Analytical methods such as X-ray photoelectron spectroscopy (XPS), FT-IR and UV–visible spectroscopy were employed to investigate the structural and optical properties of the DLC thin films respectively. FT-IR spectra show the structural modification of the DLC thin films with substrate temperatures showing the distinct peak around 3350 cm 1 wave number; which may corresponds to the sp2 C–H bond. Tauc optical gap and film thickness both decreased with increasing substrate temperature. The peaks of XPS core level C 1 s spectra of the DLC thin films shifted towards lower binding energy with substrate temperature. We also got the small photoconductivity action of the film deposited at 300 °C on ITO substrate.  相似文献   

10.
孙佳欣  周炳卿 《硅酸盐通报》2021,40(7):2396-2400
氮化硅SiNx薄膜凭借介电常数高和稳定性好的特点而被广泛应用于光电器件中,但薄膜的厚度对器件的性能有重要影响。针对此问题采用等离子体化学气相沉积技术,以高纯NH3、N2和SiH4为反应气体,优化其他沉积参数,通过改变沉积时间来生长SiNx薄膜。用X射线衍射谱(XRD),紫外-可见光光谱(UV-VIS)、傅里叶变换红外光谱(FTIR)和扫描电镜(SEM)对薄膜结构进行表征,详细研究了沉积时间与薄膜厚度的关系以及沉积时间对薄膜性能的影响。试验结果表明:所制备的样品为非晶SiNx薄膜结构,薄膜厚度随沉积时间均匀增加;薄膜折射率随沉积时间的增加而增大,光学带隙基本不随时间变化。SEM测试结果表明,随着沉积时间增加,薄膜致密性与均匀性越来越好,氧含量也越来越少,说明薄膜致密性提高可以有效阻挡O原子进入薄膜,阻止后氧化现象的发生。  相似文献   

11.
Hexagonal boron nitride (hBN) thin films were deposited on silicon and quartz substrates using sequential exposures of triethylboron and N2/H2 plasma in a hollow‐cathode plasma‐assisted atomic layer deposition reactor at low temperatures (≤450°C). A non‐saturating film deposition rate was observed for substrate temperatures above 250°C. BN films were characterized for their chemical composition, crystallinity, surface morphology, and optical properties. X‐ray photoelectron spectroscopy (XPS) depicted the peaks of boron, nitrogen, carbon, and oxygen at the film surface. B 1s and N 1s high‐resolution XPS spectra confirmed the presence of BN with peaks located at 190.8 and 398.3 eV, respectively. As deposited films were polycrystalline, single‐phase hBN irrespective of the deposition temperature. Absorption spectra exhibited an optical band edge at ~5.25 eV and an optical transmittance greater than 90% in the visible region of the spectrum. Refractive index of the hBN film deposited at 450°C was 1.60 at 550 nm, which increased to 1.64 after postdeposition annealing at 800°C for 30 min. These results represent the first demonstration of hBN deposition using low‐temperature hollow‐cathode plasma‐assisted sequential deposition technique.  相似文献   

12.
Amorphous hydrogenated carbon films have been deposited by plasma-enhanced chemical vapour deposition at different process pressures and substrate temperatures, resulting in film properties ranging from polymer-like to diamond-like. The deposition parameter combinations were chosen by experimental design to enable the determination of both deposition pressure and deposition temperature effects on the annealing behaviour. The deposited films have then been annealed in vacuum at successively higher temperatures. Changes in optical band gap, internal stress, film thickness and infrared (IR) absorption spectra have been recorded to assess the influence of deposition parameters on the thermal stability of diamond-like carbon (DLC) and to identify temperature-induced modifications in the bonding structure. The results show a large variation in thermal stability between the different DLC films; samples deposited at low pressure display the greatest stability. The internal stress of the films starts decreasing at very low annealing temperature (<100 °C for the majority of samples), in most cases long before any decrease in the optical band gap can be detected. This is explained by a movement of hydrogen from sp2 to sp3 sites as detected by IR measurements.  相似文献   

13.
《Ceramics International》2023,49(19):30972-30988
The synthesis of the nanosized multifunctional thin film provides new solutions for many technological issues and consider a great step for miniaturized technology. Toward these goals, AgSbTe2 semi-nanocrystalline thin films of different thicknesses were synthesized by the thermal evaporation technique. The structural features were investigated by X-ray diffraction, and selected area electron diffraction (SAED) yielding a semi-nanocrystalline thin film of grain size ranging from 9.98 to 21.38 nm. The energy-dispersive X-ray spectroscopy (EDAX) verified the high purity and stoichiometry of the deposited films. For optoelectronic application, many optical parameters, including band gap (Eg), Urbach energy (Eu), Refractive index (n), dispersion energy (Ed), electronic polarizability (αe), and interband transition strength (JCV) were extensively discussed. The optical band gap reduced from 1.41 to 1.04 eV upon increasing the thickness from 150 to 550 nm. The temperature dependence of the electrical resistivity (ρ) of nanosized thin film was measured and the activation energy was estimated and it was found that the resistivity increased up to 450 K asserting the semiconductor behavior of the films. As for diode application, The Ag/2D-MoS2/p-AgSbTe2 (550 nm)/n-Si/Al heterostructure diode was constructed by thermal evaporation and all the diode parameters alongside conduction mechanism were studied in detail. AgSbTe2-based diode showed a low rectification ratio; however, the ideality factor (n) and zero bias barrier height (Φb) had optimal values of about 1.40 and 0.75 at room temperature, respectively.  相似文献   

14.
《Ceramics International》2022,48(6):8069-8080
Homogeneous thin films of Molybdenum oxide (MoO3) were grown on quartz and glass substrates using the thermal evaporation method. XRD results showed that the MoO3 powder has a polycrystalline structure with an orthorhombic crystal system whereas the MoO3 thin films have amorphous nature. SEM images showed that the MoO3 thin films have a nearly uniform surfaces with worm-like shape grains. The film thickness influences on the linear and nonlinear optical characteristics of MoO3 thin films that were examined using spectrophotometric measurements and from which, the linear optical constants of the MoO3 thin films were estimated. The electronic transition type was determined as a direct allowed one. The values of the optical band gap were obtained to be in the range of 3.88–3.72 eV. The dispersion parameters, third-order nonlinear optical susceptibility, and the nonlinear refractive index of the MoO3 thin films were determined and interpreted in the light of the single oscillator model. The temperature dependence of the DC electrical conductivity and the corresponding conduction mechanism for the MoO3 films were investigated at temperatures ranging from 303 to 463 K.  相似文献   

15.
ZnO and Ru multilayer thin films are deposited using the sputtering deposition technique at room temperature. The effects of the Ru interlayer thickness and annealing temperature on the properties of multilayer thin films have been studied. An X-ray diffraction study reveals that ZnO layers are highly c-axis-oriented. The use of an Ru interlayer improves the crystalline quality of the subsequently deposited ZnO layers. Moreover, the crystalline quality of the entire structure is further enhanced through thermal annealing in a vacuum. Atomic force microscopy images show that the surface roughness of the multilayer thin films increases with a Ru interlayer thickness greater than 6 nm. The roughness of the film surface increases in correlation with annealing temperatures. This accounts for the decreased optical transmittance of the multilayer thin films annealed at temperatures higher than 450 °C. The electrical resistivity of multilayer thin films decreases with an increase in the metallic interlayer thickness. Thermal annealing at 450 °C causes low resistivity in multilayer thin films. The lowest resistivity reached ~5.4 × 10?4 Ω cm for multilayer films with a 10-nm-thick Ru interlayer annealed at 450 °C.  相似文献   

16.
In the present work, thermal evaporation and sol–gel coating techniques were applied to fabricate nanostructured thin ZnO films. The phase structure and surface morphology of the obtained films were investigated by X-ray diffractometer (XRD) and scanning electron microscope (SEM), respectively. The topography and 2D profile of the thin ZnO films prepared by both techniques were studied by optical profiler. The results revealed that the thermally evaporated thin film has a comparatively smoother surface of hexagonal wurtzite structure with grain size 12 nm and 51 m2/g. On the other hand, sol–gel films exhibited rough surface with a strong preferred orientation of 25 nm grain size and 27 m2/g surface area. Following deposition process, the obtained films were applied for the photodegradation of 2,4,6-trichlorophenol (TCP) in water in presence of UV irradiation. The concentrations of TCP and its intermediates produced in the solution during the photodegradation were determined by high performance liquid chromatography (HPLC) at defined irradiation times. Complete decay of TCP and its intermediates was observed after 60 min when the thermal evaporated photocatalyst was applied. However, by operating sol–gel catalyst, the concentration of intermediates initially increased and then remained constant with irradiation time. Although the degradation of TCP followed first-order kinetic for both catalysts, higher photocatalytic activity was exhibited by the thermally evaporated ZnO thin film in comparison with sol–gel one.  相似文献   

17.
Transparent ZnO and Al-doped ZnO (AZO) thin films have been prepared by radio frequency sputtering deposition at room temperature. The optical, electrical, and structural characteristics of the obtained films have been extensively investigated as a function of sputtering and annealing parameters. Spectrophotometry, X-ray diffraction (XRD), atomic force microscopy (AFM), four-point probe and Hall-effect measurements were employed. The ZnO films generally exhibited excellent crystalline properties, while providing a UV cut-off in the absorption spectrum for optical filtration. AZO thin films exhibited an average transparency (larger than 85%) over the visible region of the spectrum, and resistivity of the order of 10?3 Ω cm was obtained. The carrier concentration and electron mobility values proved to be dependent on the deposition parameters and annealing temperature. The obtained results showed that annealing temperatures higher than 400 °C were not necessary and potentially degraded the electronic properties of the AZO thin films.  相似文献   

18.
The effects of different post treatments on the spray coated P3HT:PPV:PCBM for an active layer in polymer solar cell were investigated using atomic force microscopy (AFM), UV–vis spectroscopy, photoluminescence (PL) spectroscopy and X-ray diffractometer (XRD). The annealing temperatures were varied from 130 °C to 150 °C and the annealing time was kept constant for 10 min. The RMS roughness of the sample that dried in the ambient condition was lower compared to other samples. This explained that the samples that undergo solvent and thermal annealing treatment had higher crystallinity of P3HT or phase separation in these samples is mostly favored. The peak absorption for P3HT:PPV:PCBM thin film is higher compared to P3HT:PCBM thin film. The better defined shoulders can be observed in the samples with solvent annealing treatment. The XRD spectra showed that the structure of the samples will evolve with high thermal annealing temperature (150 °C) due to a weak intermolecular force in P3HT molecules. This will contribute to the low crystallinity of the films which consequently affects the absorption properties of the films.  相似文献   

19.
p-Type semiconducting copper indium diselenide thin films have been prepared onto In2O3:Sn substrates by a recently developed pulse electrodeposition method that consists in repeated cycles of three potential application steps. The Cu–In–Se electrochemical system and the related single component electrolytes were studied by cyclic voltammetry to identify the electrode processes and study the deposition processes. In situ atomic force microscopy measurements during the first 100 deposition cycles denote a continuous nucleation and growth mechanism. Particles removed by film sonication from some of the films were characterized by transmission electron microscopy and determined to consist in nanoscopic and crystalline CuInSe2. The remaining film is still crystalline CuInSe2, as assessed by X-ray diffraction.The chemical characterization by combined X-ray photoelectron spectroscopy, X-ray fluorescence and inductively coupled plasma optical emission spectroscopy, showed that films were Cu-poor and Se-poor. Raman characterization of the as-grown films showed that film composition varies with film thickness; thinner films are Se-rich, while thicker ones have an increased Cu–Se content. Different optical absorption bands were identified by the analysis of the UV–NIR transmittance spectra that were related with the presence of CuInSe2, ordered vacancy compounds, Se, Cu2−xSe and In2Se3. The photoelectrochemical activity confirmed the p-type character and showed a better response for the films prepared with the pulse method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号