首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The separation of fat from rendered materials has potential for value-added products, fuels and feed sources for animals. Current industrial processes utilize continuous screw pressing to extract fat from rendered materials, but the ability to minimize residual fat content is limited. In this work, liquid and supercritical CO2 were used to extract the remaining fat from rendered poultry meal. CO2 extraction offers high extraction yields with potential ecological and economic benefits for the rendering industry. A semi-batch extraction unit was used to investigate the effect of pressure (69–345 bar), temperature (25 °C, 40 °C and 50 °C), flow rate, and mass of CO2 on the extraction yield and the fat solubility. Maximum extraction yields between 87% and 97% were obtained which produced a remaining fat content of 1.0 ± 0.3 wt% in the extracted poultry meal. Fat solubility increased with pressure but decreased with temperature, providing liquid CO2 with the highest fat solubility (6.47 g/L) at 25 °C and 345 bar. The Chrastil model successfully correlated the solubility data as a function of density and temperature, obtaining an AARD value of 5.56%. Gas chromatography was used to analyze the composition of fatty acids, obtaining similar results with those reported in the literature. It can be concluded that high fat extraction yields can be obtained using CO2 and that liquid CO2 is more effective than supercritical CO2 for the extraction of rendered fats under the conditions tested.  相似文献   

2.
Supercritical fluid extraction from freeze-dried Eruca sativa leaves is assessed with the aim of studying the feasibility to obtain bioactive enriched fractions containing different classes of valuable compounds. Total extraction yields and compositions using pure CO2 and CO2 + selected co-solvents are compared. Overall extraction curves, fitted by the model of broken and intact cells developed by Sovová, are reported and the influence of the main parameters that affect the extraction process is analysed. The extract with the highest content in glucosinolates and phenols was collected at 30 MPa and 75 °C using 8% (w/w) of water with respect to the CO2 flow rate, whereas the fraction richest in lipids was obtained using 8% (w/w) of ethanol as co-solvent at 45 °C and 30 MPa. A process including a first step with supercritical CO2 extraction using water as co-solvent followed by a second step, where a fraction rich in lipids is extracted using ethanol as co-solvent, is proposed. SCCO2 results are compared with Soxhlet and other methods that combine organic solvents with ultrasounds.  相似文献   

3.
A fast and green process for the isolation of high value lipids from different marine microorganisms is presented involving the use of limonene, a green biodegradable solvent, as an alternative to traditional hexane extraction. The optimized process is based on pressurized liquid extraction (PLE) at 200 °C for 15 min using limonene:ethanol (1:1, v/v) as extracting solvent. Under these conditions, lipids were extracted from different microalgae such as Spirulina, Phormidium, Anabaena and Stigeoclonium and their composition in terms of fatty acids were studied by using a Fast-GC–MS method and compared with the original content in the raw material. The extraction method provided the best results in terms of extraction yield for Spirulina, meanwhile the highest amount of ω-3 fatty acids were obtained from Stigeoclonium.  相似文献   

4.
This work demonstrates that supercritical carbon dioxide extraction is efficient for the complete recovery of neutral lipids from microalgae with a water content up to 20 wt%, allowing thus a further full characterization of this oil. This is a first useful step in the framework of lipid production from microalgae either for nutraceutical, food or for energy applications. This study is particularly focused on the influence of the pretreatments upon extraction kinetics and yields. This study proposes a complete study at laboratory scale (10 g per batch of dry biomass) of the influence of pretreatments (type of drying and grinding) and of water content on the extraction kinetics and yields as well as on the oil composition in terms of lipidic classes and profiles. Two drying pretreatments (drying under air flow and freeze-drying) applied on Nannochloropsis oculata were studied. Extraction experiments were carried out at 40 MPa, 333 K, with a carbon dioxide flow rate of 0.5 kg h−1 and for different granulometries. Results showed that drying under air flow at 308 K is the most adequate pretreatment leading to the most rapid kinetics. Whatever the pretreatment used, the extracted oil contains more than 90 wt% of triglycerides and does not contain phospholipids. As expected, the smaller the particle size, the faster the extraction kinetics. Finally, an increase in the biomass water content up to 20 wt% increases the global extraction kinetics (extraction of both water and oil) but appears to have no influence on oil extraction yields. Moreover, the extraction of neutral lipids happens to be complete for a CO2/charge mass ratio ranging from 30 to 130 depending on the operating conditions and on the characteristics of the treated biomass. Finally, pilot scale experiments were performed with batches up to 15 kg in order to evaluate the influence of pressure and particle size on the extraction kinetics and yields. Extracts obtained at 333 K with operating pressures of 50 MPa and 85 MPa have similar compositions and do not contain phospholipids.  相似文献   

5.
The extraction of lipids from both wet and dry biomass produced by fermentation has been carried out using near-critical dimethylether (DME) as the extraction solvent. Fermentations were carried out from a shake flask up to a 300 L scale using the microorganism Mortierella alpina, and up to a 20 L scale for Phaffia rhodozyma and Agrobacterium tumefaciens. The lipids extracted at a laboratory and pilot scale from the biomasses were enriched in arachidonic acid, astaxanthin, and co-enzyme Q10 respectively. Extractions were also performed on marine microalgae, produced by a proprietary fermentation process, to obtain lipids rich in EPA. Lipids were extracted from wet biomass using DME, which removes the need to dry the biomass. Water is also co-extracted, which has to be separated from the lipid. The biomass shrunk considerably during packed bed extraction of wet biomass, leading to channelling. Repacking and re-extraction of the packed bed enabled full lipid yields to be obtained. The extraction of lipids from biomass suspended in fermentation broth showed considerable promise, and lipid yields were improved due to the recovery of lipids that had been exuded into the broth from the microorganism. In contrast, the extraction of lipids from freeze-dried biomass using DME was routine, yields were substantially higher than using CO2 or CO2 + ethanol, but were lower than from wet biomass. DME also extracted polar lipids from both wet and dry biomass, leading to the higher total lipid yields compared to CO2. Separate extraction of non-polar and polar lipids was possible by sequential extraction of dry biomass using initially CO2 followed optionally with ethanol co-solvent; and then DME.  相似文献   

6.
Hemp (Cannabis sativa L.) seed oil is valued for its nutritional properties and for the health benefits associated with it. Its greatest feature is that the ratio of linoleic acid and linolenic acid is the desirable value of 3:1. In this research, supercritical carbon dioxide was applied to extraction of functional oil from hemp seed. In order to determine the effect of temperature and pressure on the yield of extracted components, the oil was extracted from hemp seed at temperatures between 40 and 80 °C, pressures of 20–40 MPa and a CO2 flow rate of 3 mL/min. The solubility of hemp seed oil in SCCO2 determined experimentally was fitted to the Chrastil equation to determine the model parameters. The solubility calculated by Chrastil equation was compared with the experimental data. Finally, the fatty acid profile of the oil was evaluated by gas chromatography-flame ionization detection (GC-FID). There are no significant differences in the compositions of five abundant fatty acid components of the oil obtained at different sampling times with SCCO2 extraction and other extraction methods.  相似文献   

7.
A setup based on a static visual synthetic method for determining phase equilibria up to 100 MPa is presented. Solubilities of carbon dioxide (CO2) in a high-oleic sunflower oil (HOSO) and in an additivated vegetable lubricant (BIO-2T-05) were determined from 298 K to 363 K up to CO2 mass compositions of 0.42. The experimental device was verified comparing the solubilities of CO2 in HOSO with values from other laboratory. For both systems, the values of CO2 solubility show cross-over pressures among the different isotherms. A new equation was used to correlate the solubility data, with deviations in CO2 mole fraction in the oil-rich phase lower than 1.6%. The prediction ability of Carvalho and Coutinho equation was tested with experimental data. Vapor–liquid–liquid equilibria were also investigated for CO2 + BIO-2T-05 in the range 288–305 K. Furthermore, densities and viscosities at 0.1 MPa for BIO-2T-05 were measured from 278 K to 373 K.  相似文献   

8.
Phase equilibrium data of caffeine, vanillin, o-ethyl vanillin and a natural rosemary extract (containing 73.9% carnosic acid and 14.7% carnosol) in argon have been determined in present work.Solubility data were determined at temperatures of 313.15 K, 333.15 K and 363.15 K and in the pressure range from 0.82 MPa up to 50.27 MPa using a static–analytic method and were compared to solubility data of the same substances in CO2.Maximal solubility of vanillin in argon was obtained at a temperature of 313.15 K and a pressure of 43.8 MPa, approx. 0.015 g/g. Comparing the solubility data of pure vanillin in argon and in CO2 higher solubility in argon is observed at lower temperatures and pressures. For o-ethyl vanillin the solubility in argon is higher in comparison to solubility in CO2 in the entire range of pressure, especially at higher temperatures.Maximal solubility of caffeine in argon was observed at a temperature of 363.15 K 0.001361 g caffeine/g argon at 38.9 MPa. With increasing pressure solubility increases, while temperature does not have a noticeable impact in the temperature range from 313.15 K to 333.15 K; the solubility increased with increasing temperature to 363.15 K. Similarly, solubility of carnosic acid extract increases with increasing pressure, from about 0.0097 × 10−2 g substance/g gas at 2.08 MPa and at 313.15 K to 0.0338 × 10−2 g substance/g gas at 50.27 MPa and at 363.15 K.Solubility of the investigated compounds in argon is a function of both, pressure and temperature. Generally, pressure significantly impacts solubility particularly up to a pressure of 20.0 MPa in case of vanillin and up to 30 MPa in case of o-ethyl vanillin and carnosic acid extract. An additional increase of pressure has only a slight impact on solubility. In the case of caffeine, the impact of pressure on the solubility becomes more evident at pressures higher than 20 MPa.  相似文献   

9.
β-Elemene, germacrene A and damascenine were extracted from lady-in-a-mist (Nigella damascena L.) seeds with supercritical carbon dioxide at 10–30 MPa and 40–60 °C. The influence of supercritical fluid extraction (SFE) conditions on the yield and concentration of volatiles in the extract and the extraction kinetics were studied. The extraction yields and the apparent solubility of volatile compounds increased with increasing density of CO2. The highest total yield was obtained at 30 MPa and 40 °C but the selectivity for volatiles was low under these conditions. With respect to both yield of volatiles and their concentration in extract, the best results were at 12 MPa and 40 °C, either with one separator or with additional separator maintained at 5 MPa and 25 °C. The yields of β-elemene, germacrene A and damascenine reached 0.72, 3.31 and 3.65 mg g−1 and their concentration in the extract was 2.62, 12.04 and 13.28 wt.%, respectively. Though the yields of germacrene A and damascenine were by about 20% higher using Soxhlet extraction with hexane than using SFE, their concentration in the extract where fatty oil prevailed was only 1.19 and 1.20 wt.%, respectively. Under the conditions of hydrodistillation, partial conversion of germacrene A to β-elemene occurred and its yield was higher than using the other methods but the composition of volatiles in the SFE extracts better corresponds to the original raw material.  相似文献   

10.
The use of supercritical carbon dioxide (SC⿿CO2), with water as a modifier, was evaluated in this study as a method to extract protocatechuic acid (PA) from Scutellaria barbata D. Don. The highest extraction yield of PA, 64.094 ± 2.756 μg/g of dry plant, was achieved at 75 °C and 27.5 MPa, with the addition of 15.6% (v/v) water as a modifier. The mean particle size was 0.355 mm, the CO2 flow rate was 2.2 mL/min (STP) and the dynamic extraction time was 100 min. At pressures of 16.2⿿30.0 MPa and temperatures of 45⿿75 °C, the mole fraction solubilities of PA in SC⿿CO2 ranged from 2.829 ÿ 10⿿7 to 9.631 ÿ 10⿿7. The solubility data for PA fit well in the Chrastil model. It is evident that the SC⿿CO2 extraction uses less solvent, saves both energy and time and is an environmentally friendly extract technology that can be used in the food, cosmetic and pharmaceutical industries.  相似文献   

11.
Melting temperatures of organic solids are often depressed by high-pressure CO2 due to a dissolution of CO2 in the molten organic compounds. For thermodynamic analysis of the melting point depression, solubilities of CO2 in molten biphenyl and naphthalene were measured by near-infrared spectroscopy at various temperatures and pressures up to 20 MPa. Molarity of the organic component was determined from the 3νCH absorption band, and that of CO2 from the 2ν1 + ν3 band. Mole fraction of CO2 in the liquid phase was found to be an increasing function of the pressure up to 0.6 at 20 MPa and a weakly decreasing function of the temperature. The solubility data were used for modeling of the mixtures by the Peng–Robinson equation of state with a binary interaction parameter k12. Calculation of the solid–liquid–gas phase equilibrium for the model fluid qualitatively described a large decrease in the melting temperature with increasing pressure up to 10 MPa followed by a small change at higher pressures. The melting point change was interpreted by the two competing effects: hydrostatic pressure effect increases the melting point by ca. 8 °C at 20 MPa, whereas CO2 solubility effect reduces it by ca. 30 °C. Decomposition of the solubility effect into ideal and non-ideal mixing parts revealed that the non-ideality increases the melting point by more than 10 °C.  相似文献   

12.
In this study, the extraction of jojoba seed oil obtained from jojoba seed using both supercritical CO2 and supercritical CO2+ethanol mixtures was investigated. The recovery of jojoba seed oil was performed in a green and high-tech separation process. The extraction operating was carried out at operating pressures of 25, 35 and 45 MPa, operating temperatures of 343 and 363 K, supercritical fluid flow rates of 3.33 × 10−8, 6.67 × 10−8 and 13.33 × 10−8 m3 s−1, entrainer concentrations of 2, 4 and 8 vol.%, and average particle diameters of 4.1 × 10−4, 6.1 × 10−4, 8.6 × 10−4 and 1.2 × 10−3 m. It was found that a green chemical modifier such as ethanol could enhance the solubilities, initial extraction rate and extraction yield of jojoba seed oil from the seed matrix as compared to supercritical CO2. In addition, it was found that the solubility, the initial extraction rate and the extraction yield depended on operating pressure and operating temperature, entrainer concentration, average particle size and supercritical solvent flow rate. The solubility of jojoba seed oil and initial extraction rate increased with temperature at the operating pressures of 35 and 45 MPa and decreased with increasing temperature at the operating pressure of 25 MPa. Furthermore, supercritical fluid extraction involved short extraction time and minimal usage of small amounts entrainer to the CO2. About 80% of the total jojoba seed oil was extracted during the constant rate period at the pressure of 35 and 45 MPa.  相似文献   

13.
The high-pressure vapour–liquid phase equilibria (PTxy) of the binary mixture propylene glycol/CO2 have been experimentally investigated at temperatures of (398.2, 423.2 and 453.2) K over the pressure range from (2.5 to 55.0) MPa using a static-analytic method. Furthermore, the high-pressure vapour–liquid phase equilibria (PTxy) of the ternary mixture propylene glycol/CO2/ethanol at constant temperatures of (398.2, 423.2 and 453.2) K and at constant pressure of 15.0 MPa have been determined using a static-analytic method. Initial concentrations of components in propylene glycol (PG)/ethanol (EtOH) mixture vary from 10 up to 90 wt.%. In general, for binary system it was observed that the solubility of CO2 in the heavy propylene glycol reach phase increases with increasing pressure at constant temperature. On the contrary, the composition of gaseous phase is not influenced by the pressure or the temperature. On average the solubility of PG in light phase of CO2 amounts to 30 wt.%. The system behaviour at temperature of 398.2 K was investigated up to 70.0 MPa and a single-phase region was not observed. Above the pressure 60.0 MPa a single-phase region of the system was observed for the temperature of 423.2 K. For the temperature of 453.2 K the single-phase was observed above the pressure of 48.0 MPa. For ternary system it was observed that the composition of heavy phase is slightly influenced by the temperature when the mass fraction of EtOH in initial mixture is higher than 50 wt.%. If the mass fraction of PG in initial mixture is higher than 50 wt.%, the composition of heavy phase is not influenced by the temperature anymore. The composition of the PG, EtOH and CO2 in light phase remains more or less unchanged and it is not influenced by the conditions.  相似文献   

14.
The knowledge of lipid composition in beer ingredients (malt and corn grits) and wort enables the quality control for final product. Since supercritical fluid extraction (SFE) is an efficient technique for preparing samples for analysis without the use of solvents, in this research Supercritical CO2 (SC–CO2) extraction was compared with the traditional Soxhlet one for a gravimetric determination of total lipids on malt and corn grits. The obtained extracts were then analyzed by HPLC-ELSD after TLC separation of triacylglycerols (TAGs) for lipids fingerprint. The extraction of total fats achieved by a 60-min run with pure CO2 at 65 MPa and 100 °C was 43% higher than that produced by Soxhlet performed for 9 h for malt. The extraction was intermediate for SFE at 60 and 80 °C. The recovery of the TAG obtained with SC–CO2 at 100 °C was statistically comparable with results from Soxhlet extraction.  相似文献   

15.
1,3,5-tri-tert-butylbenzene (TTBB) is solid at ambient conditions, and has substantial solubility in liquid and supercritical carbon dioxide. We present the phase behavior of TTBB–CO2 binary system at temperatures between 298 and 328 K and at pressures up to 20 MPa. Phase diagrams showing the liquid–vapor, solid–liquid and solid–vapor equilibrium envelopes are constructed by pressure–volume–temperature measurements in a variable-volume sapphire cell. TTBB is highly soluble in CO2 over a wide range of compositions. Single-phase states are achieved at moderate pressures, even with very high TTBB concentrations. For example, at 328 K, a binary system containing TTBB at a concentration of 95% by weight forms a single-phase above 2.04 MPa. TTBB exhibits a significant melting-point depression in the presence of CO2, 45 K at 3.11 MPa, where the normal melting point of 343 K is reduced to 298 K. With its high solubility in carbon dioxide, TTBB has potential uses as a binder or template in materials forming processes using dense carbon dioxide.  相似文献   

16.
Equilibrium solubility of m-nitroaniline and p-nitroaniline in supercritical carbon dioxide (SCCO2) is essential to design the process of SCCO2 extraction and to investigate the effect of each solute on the solubility in SCCO2 ternary system. However, the solubility data is not reported so far. We performed the solubility measurements at the temperatures of 308–328 K and in the pressure range of 11.0–21.0 MPa. The experimental results showed the solubility of m-nitroaniline and p-nitroaniline was enhanced in m-nitroaniline + p-nitroaniline + SCCO2 ternary system. The improvement factor (i), separation factor (μ) and separation efficiency (HE) in the ternary system were defined and calculated, and the best separation result could be obtained at 21.0 MPa and 328 K using SCCO2 extraction, where the separation efficiency was up to 90.9%. Based on the chemical association theory, a new model was developed to calculate the solubility of mixed solutes in SCCO2. The correlation result of the new model was tested by about 500 solubility data from 15 kinds of two solutes mixtures in SCCO2. The correlated result showed that the new model could achieve much better AARD (%) than those of frequently used Sovova and Sovova-T models.  相似文献   

17.
In this study, the essential oil of aerial parts of a species of a plant called Smyrnium cordifolium Boiss (SCB) was extracted by supercritical CO2. The essence was analyzed by the method of GC/MS. Design of experiments was carried out with response surface methodology by Minitab 16 software to optimize four operating variables of supercritical carbon dioxide (SC-CO2) extraction (pressure, temperature, CO2 flow rate and extraction dynamic time). This is the first report announcing optimization of the operation of supercritical extraction of SCB in laboratorial conditions. Optimizing process was done to achieve maximum yield extraction. Independent variables were dynamic time (td), pressure (P), temperature (T) and flow rate of SC-CO2 (Q) in the range of 30–150 min, 10–30 MPa, 40–60 °C and 0.5–1.7 ml/min, respectively. The experimental optimal recovery of essential oil (0.8431, w/w%) was obtained at 13.43 MPa, 40 °C, 150 min (dynamic) and 1.7 ml/min (CO2 flow rate).  相似文献   

18.
Hydrogen solubility in CO2-expanded 2-propanol and in propane-expanded 2-propanol was obtained by an acoustic technique described elsewhere [L. Zevnik, J. Levec, Gas expanded liquids: Determination of the volumetric expansion by an acoustic technique, J. Supercrit. Fluids (2007), in press]. Solubility in CO2-expanded 2-propanol at expansion coefficients V/V0 = 2 and 4 was determined at 298 and 313 K. H2 solubility was determined also in liquid CO2 at 298 K and partial pressure of H2 up to 6 MPa. Solubility in propane-expanded 2-propanol with V/V0 = 2 and 4 was measured at 333, 353 and 393 K. Hydrogen mole fraction in liquid propane was obtained at 333 K and partial pressure of H2 up to 5 MPa. For both expanded liquids the results show that hydrogen concentration increases with increasing V/V0 ratio and with increasing temperature. It is demonstrated, however, that the acoustic technique is a reliable method for determination of gas composition and that it can be also implemented in various fields of gas processing.  相似文献   

19.
In order to improve the efficiency of processes using supercritical (sc) carbon dioxide (CO2) to micronize the carotenoid “lycopene”, it is important to know the solubility of lycopene in mixtures of the organic solvent ethyl acetate (EA) and the antisolvent CO2 at elevated pressures. The solubility of lycopene has been determined for different temperatures (313–333 K), pressures (12–16 MPa) and CO2 molar fractions (0.58–1). The obtained data show that CO2 acts as an antisolvent in the system lycopene/EA/CO2 in the range of CO2/EA ratios studied. The solubility of lycopene is rather small with lycopene molar fractions ranging from 0.1 × 10−6 to 46 × 10−6. The solubility of lycopene increases with temperature, pressure and EA concentration.  相似文献   

20.
Extraction of sunflower oil from sunflower seeds (Heliantus annuus L.) using supercritical CO2 was studied. The shrinking core model was applied to the modeling of the packed-bed extraction process. The experimental data were obtained for extraction conducted at the pressures of 20, 30, 40, 50 and 60 MPa; the temperatures of 313, 333 and 353 K, the CO2 flow rates of 1–4, and 6 cm3 CO2 min−1; the mean particle diameters of 0.23, 0.55, 1.09, 2.18 mm. The supercritical CO2 extraction process was modeled by a quasi steady state model as a function of extraction time, pressure, temperature, CO2 flow rate, and particle diameter. The supercritical CO2 extraction process. The intraparticle diffusion coefficient (effective diffusivity) De was used as adjustable parameter. The model using the best fit of De was correlated the data satisfactorily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号