首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(11):15755-15761
In this work we detail the preparation of new luminescent Li+ and K+ doped Na2Zn3Si2O8: Er3+ up-conversion phosphors using the high-temperature solid-phase method. We investigate the phosphors phase structure, elemental distribution, up-conversion luminescence characteristics and temperature sensing properties. Our fabricated samples were found to be homogeneous and when excited using 980 nm light, they emitted wavelengths in the green and red visible wavelength bands, which correspond to two major emission bands of Er3+. Doping with Li+ and K+ increased the luminescence intensity of the Na2Zn3Si2O8: Er3+ phosphor at 661 nm by 36 and 21 times respectively. The highest relative temperature sensitivity (Sa) of the fabricated phosphor reached a value of 19.69% K?1 and the highest absolute temperature sensitivity (Sr) reached 1.20% K?1. These values are superior to other materials which utilize up-conversion by Er3+ ions as a tool for temperature sensing. We anticipate that these new phosphors will find significant application as components in optical temperature measurement systems.  相似文献   

2.
《Ceramics International》2023,49(3):4898-4908
Tb3+-Yb3+ co-doped transparent glass ceramics (GCs) containing Y2Ti2O7 crystal phases were synthesized by the melt crystallization. The light transmittance of GCs in the visible region reached 78%, and the average grain size was 278 nm under the optimal heat treatment conditions (720 °C/2 h). The GCs exhibited greater up-conversion luminescence intensity than precursor glass, and the reason for this result was explained in accordance with the Judd-Ofelt theory. Moreover, the introduction of Li+ did not change the crystalline phase of GCs. The emission intensity of the green light of the 8% Li + doped GCs was significantly enhanced by nearly 4.48 times under 980 nm excitation. The XRD refinement results suggest that the enhanced luminescence intensity is correlated with the change of the Y2Ti2O7 crystal lattice caused by Li+ doping. The relevant luminescence mechanism was elucidated. The results suggest that Li+ doped transparent GCs open novel avenues for green UC applications.  相似文献   

3.
Near‐infrared long‐afterglow (LAG) materials have attracted considerable attention owing to their high potential for in vivo imaging applications. Here, we present a series of near‐infrared LAG phosphors Li5Zn8Al5?xGe9O36:xCr3+ (LZAG:Cr3+), which were synthesized using a solid‐state reaction method. The pure LZAG host exhibits blue photoluminescence and LAG emission. We investigated the effect of the zinc vacancy contents on the photoluminescence and LAG performance by adjusting the zinc content and introducing Ga3+ ions to substitute the Zn2+ sites in LZAG host. When Cr3+ ions were introduced into the LZAG host, LZAG:Cr3+ produced a strong, broad blue emission band centered at 456 nm and a near‐infrared emission band at 700 nm caused by the 2E → 4A2 transition of Cr3+. The energy transfer processes from the LZAG host to Cr3+ were identified in the photoluminescence and LAG process. After irradiation at 258 nm for 10 minutes, the LAG emission of LZAG:0.008Cr3+ can last nearly 2.5 hours. Moreover, the LAG intensity and duration of LZAG: 0.008Cr3+ were significantly improved by introducing a small dose of Ga3+ ions. Finally, the traps and mechanism of LAG in LZAG, LZAG:Ga3+, and LZAG:Cr3+ were discussed in detail.  相似文献   

4.
A yellow long persistent luminescence (LPL) phosphor of CaGa2O4:Bi3+ (CGO:Bi) is developed, of which the LPL can be visually recognized (0.32 mcd m?2) over 36 hours after the removal of the excitation source. Furthermore, an excellent LPL performance above the room temperature and unusual thermal quenching behavior are observed. The thermoluminescence (TL) curves indicate that the continuity of the traps structure with different depths is a key factor in ensuring that carriers could be released from deep traps above room temperature successively. The work verifies unambiguously that the continuous defect‐state structure is beneficial to the LPL temperature resistant abilities, which would provide a reasonable approach to design new LPL phosphors in extreme environments.  相似文献   

5.
《Ceramics International》2023,49(5):7913-7919
Developing novel optical thermometry with ultrahigh relative sensitivity and temperature resolution has become a cutting-edge topic. For this purpose, under obeying Boltzmann distribution, a series of Li2Zn0.9992-xAxGe3-yByO8:0.08% Cr3+ (B= Sc3+, In3+, A = Si4+) phosphors were studied, which the luminescence intensity ratio between the transition of 4T2g4A2g emission and the R line based on thermally coupled energy levels constitutes a temperature sensing work with a relative sensitivity of 9.46% K?1, 9.73% K?1, and 10.38% K?1, respectively. It is worth mentioning that the luminescence intensity of the R line (peak 1) increases significantly with the increase of temperature, while the transition of 4T2g4A2g (peak 2) with high intensity at low temperature gradually quenching, and this opposite trend is an important advantage for the design of excellent thermometers. Compared the best relative sensitivity of Li2Zn0.9992-xAxGe3-yByO8:0.08%Cr3+ (B= Sc3+, In3+, A = Si4+) with the crystal field Dq/B, it can be concluded that relative sensitivity increasing gradually with decreasing the intensity of crystal field. Finally, by testing the stability of the sample at 50 K, a thermal resolution of 0.082 K, 0.080 K and 0.077 K was obtained, respectively, which is one of the best thermal resolutions so far, while the repeatability of the sample stability at 50 K and 300 K cycles was higher than 99%. Our work is expected to provide guiding insights for optimizing the sensitivity of Cr3+-based luminescence intensity ratio thermometers.  相似文献   

6.
《Ceramics International》2022,48(7):9640-9650
In the field of advanced anti-counterfeiting research, it is a hot issue to develop a multimodal anti-counterfeiting material with adjustable luminescence characteristics. Here, persistent luminescent materials of BaGa2O4:xBi3+ (x = 0-0.02) and BaGa2O4:0.005Bi3+,yLi+ (y = 0.001–0.02) were synthesized by a solid state reaction at high temperature. BaGa2O4: Bi3+ exhibited a broad blue emission at ~470 nm (transition from [GaO4]) and a sharp NIR emission at ~710 nm (3P11S0 transition of Bi3+), upon UV excitation at 250 nm. Incorporation of Li+ in BGO: 0.005Bi3+ induced the emission color shifting from blue to green. After stoppage of UV excitation, the BGO:0.005Bi3+ exhibited white afterglow with emission peaks at the range of 500–700 nm. However, incorporation of Li+ leaded to a stronger green afterglow and a weaker NIR afterglow. When the afterglow disappeared, the sample outputted afterglow again after heating processing. The prepared samples exhibited time- and temperature-dependent multimode luminescence, so they were used as components, combined with Morse code to realize multi-modal dynamic anti-counterfeiting. The outcomes in this work indicate that the prepared luminescent materials have broad prospects in advanced anti-counterfeit applications.  相似文献   

7.
《Ceramics International》2023,49(20):32411-32417
The research focus in the field of anti-counterfeiting has shifted toward the secure luminescent label technology, which has gained prominence. The exceptional luminescence properties of persistent luminescence materials are important in the achievement of effective anti-counterfeiting measures. It is in this context that Sr3Y2Ge3O12 can serve as an excellent matrix material. In this study, it is found that Sr3Y2Ge3O12: 4.00% Mn2+ exhibits a luminescence intensity, persistence time, and stability that meet the practical requirements for applications. It is shown that the fabricated persistent luminescence film can be used in anti-counterfeiting applications, thereby, demonstrating the possibility to broaden the application scope of persistent luminescence materials. An emission band centered at 634 nm and a high-energy inflection point at 578 nm are observed in the samples excited at 260 nm. Fluorescence emission at 634 nm is also achieved through X-ray excitation. Through thermoluminescence, photoluminescence, and phosphorescence spectroscopy, a comprehensive investigation of the trap characteristics and inherent mechanisms of the long persistent phosphorescence has been conducted. The novel orange-red Sr3Y2Ge3O12: Mn2+ phosphor is extensively examined.  相似文献   

8.
《Ceramics International》2023,49(4):6343-6350
A novel far-red phosphors Li2ZnTi3O8:Cr3+ were successfully synthesized via the conventional solid-state method. The structural characteristics, luminescence properties and concentration quenching of the Li2ZnTi3O8:Cr3+ phosphors were investigated systematically. Under the excitation at 360 nm and 468 nm, the Li2ZnTi3O8:Cr3+ phosphors displays the emission spectra in the range from 600 nm to 850 nm. The far-red emission centered at 735 nm was attributed to the spin-forbidden 2E→4A2 transition of Cr3+ ions. The research results of this paper indicate that the phosphors Li2ZnTi3O8:Cr3+ has prospective applications in indoor plant cultivation.  相似文献   

9.
For the first time, a Zn1.1Ga1.8Ge0.1O4 transparent spinel ceramic has been fully densified by spark plasma sintering. XRD measurements show that this ceramic is composed of a pure cubic spinel phase. SEM analysis revealed a homogeneous and dense microstructure with the average grain size being 200 ± 100 nm. The transmittance of these fine-grained ceramics reached 70 % in the visible range and is very close to 80 % at 2 µm, thus close to the Tmax value deduced from the measurement of the refractive index. The ceramics exhibit excellent mechanical properties with a Young modulus of 222 GPa, a Vickers hardness of 14.25 GPa and a thermal conductivity of 7.3 W.m−1. K−1. By doping with Cr3+ ions, transparent Zn1.1Ga1.8Ge0.1O4 ceramics present both a red luminescence and a long-lasting afterglow during several minutes. Moreover, a near infrared broadband emission at 1.3 µm is also achieved with Ni2+ ions.  相似文献   

10.
Acting as the electron trap, oxygen vacancies can strongly influence the long persistent luminescence (LPL) properties were verified in Ca2Ga2GeO7: Zn2+ (CGGZ) phosphor. The existence of oxygen vacancies in this self‐excitation material was confirmed by a simple fluorescence probe method. The introduction of zinc ions promotes the generation of oxygen vacancies, as well as optimizes its LPL properties. Thermoluminescence (TL) analysis revealed that electrons in deep trap will effectively transfer to the shallow one via the bridge of interstitial zinc. Accordingly, a mechanism for PL and LPL in this Gallogermanates was provided.  相似文献   

11.
Red/near infrared (NIR) long persistent phosphors have received extensive attentions in biomedical, food inspection, iris recognition, biological imaging, etc. Herein, a new phosphor, Li2ZnGe3O8:Cr3+, is reported with deep red persistent luminescence peaking at 708 nm. By adjusting the Cr3+ doping concentration, the competitive site occupation at [ZnO6] and [GeO6] polyhedral enables different traps behaviors including trap types, trap concentration and trap depth, which in turn leads to different afterglow duration time from 2 to 20 h. The persistent luminescence mechanisms originated from different trap models have been discussed, and it is found that they can cooperate or inhibit each other, enabling different luminescence depending on time. The dynamic anti-counterfeiting applications have been demonstrated, which provides a new way to rationally designing for multi-functional luminescent materials.  相似文献   

12.
Recently, study on Cr3+-doped zinc gallate and zinc gallogermanate persistent phosphors has become a hot topic in persistent luminescence and bio imaging areas, because of their near infrared (NIR) emission and long afterglow. However, regulation of efficient traps and improvement of persistent luminescence through bottom-up design are the key challenge. Here, we recommend a new paradigm of chemical unit co-substitution with [Mg2+-Ge4+] substituting for [Ga3+-Ga3+] in ZnGa2O4, which contributes to the opposite charged and distorted octahedral defects of MgGa′ and GeGa · in pair around the CrN2 ions. The formed defect clusters of MgGa′-CrN2-GeGa · , which are closely related to the trap depth, can be accurately regulated through varying the doping content of Mg2+/Ge4+ in the resulting spinel solid solutions of ZnGa2−x(Mg/Ge)xO4:Cr3+ (x = 0–1.25). Moreover, the defect clusters cannot only store and recharge visible and UV radiations that contributes to the long lasting NIR persistent luminescence but also can enhance the NIR emission intensity at ~695 nm. The persistent luminescence induced by UV light excitation exhibits an improvement at a deeper trap depth, but it follows an opposite law through visible light excitation. The prepared nanoparticles have the advantages of intense NIR emission, long lasting afterglow, and excellent rechargeability for visible/UV radiations, so they are the potential nanoprobes for long-term bio imaging in living animals.  相似文献   

13.
《Ceramics International》2023,49(19):31607-31617
Optical information encryption based on luminescence materials have received much attention recently. However, the single luminescence mode of the luminescence materials greatly limits its anti-counterfeiting application with high safety level. Here, a series of luminescence materials of Tb3+ and Bi3+ co-doped ZnGa2O4 phosphors with great correspondence in photoluminescence (PL), persistent luminescence (PersL), and thermoluminescence (TL) modes was synthesized by the conventional solid-phase method for the application in multi-modal anti-counterfeiting fields. Under the excitation of 254 nm, ZnGa1.99O4:0.01 Tb3+, yBi3+ (y = 0.001,0.002) sample exhibited a broad blue emission band (the transition from [GaO6]) at 440 nm and the characteristic emission peaks of Tb3+ at 495 nm, 550 nm, 591 nm and 625 nm, corresponding to the transitions of 5D4-7Fn (n = 6, 5, 4, 3), respectively. Interestingly, the co-doping of Bi3+ ions improve the crystallinity and particle size of the phosphor, subsequently enhanced the PL intensity of Tb3+ to 6 times that of Tb3+ singly doped ZnGa2O4 phosphor. Further, the flexible films with multi-modal luminescence properties have been fabricated through the unique TL and PersL characteristics of ZnGa2O4: Tb3+, Bi3+ phosphors, including “Optical information storage film”, “snowflake and characters” and “QR code”. Moreover, a set of optical information encryption is obtained by combining ZnGa2O4:Tb3+, Bi3+ phosphor and red emitting phosphor. The results indicate that ZnGa2O4:Tb3+, Bi3+ phosphor with multi-modal stimulus response can be expected to be potentially used in the applications of optical information storage and anti-counterfeiting fields.  相似文献   

14.
Er3+/Yb3+/Li+‐tridoped Y2Ti2O7 nanophosphors were synthesized via a facile sol–gel process. The samples were characterized by the inductively coupled plasma atomic emission spectrometer (ICP‐AES), X‐ray diffraction (XRD), transmission electron microscopy (TEM), and infrared‐to‐visible upconversion (UC) luminescence spectra. XRD analysis showed that the crystallization temperature of pyrochore‐type Y2Ti2O7 was reduced due to the flux effect of Li+ ions, whereas TEM measurements confirmed that the particles size of (Y0.815Er0.01Yb0.075Li0.10)2Ti2O7 was about 30–40 nm when calcining at 800°C for 1.0 h. The calcining temperature and Li+ ion concentration dependence on UC luminescence spectra were investigated. It was found that, when incorporating 10.0 mol% Li+ ion, the UC red and green emission intensity was drastically increased by a factor of 18.6 and 8.3, respectively. The enhancement of UC emission may be mainly attributed to the modification of local symmetry around Er3+ ions by tridoping Li+ ions. And also, the pump power dependence of the emission intensity was investigated to understand the fundamental UC mechanism.  相似文献   

15.
Herein, Li+-enriched Li(1+x)2ZnTi3O8 ceramics are prepared via the solid-phase methods. As x increases, the unit cell volume gradually increases, while the grain size initially increases and then decreases gradually. The Li(1+0.06)2ZnTi3O8 ceramics exhibit the best dielectric properties: εr = 25.92, Q × f = 109534 GHz (@7.37 GHz, which is a 48 % increase compared with the stoichiometric counterpart.), and τf = ?8.21 ppm/°C. The complex chemical bond theory and Raman spectroscopy reveal that Ti-O bonds have a significant effect on the dielectric properties. An optimal Li+ enrichment leads to an overall reduction in the distortion of the Li/ZnO4 tetrahedra, resulting in a reduction in τf. First-principles calculations demonstrate that a suitable excess of Li+ leads to an increase in the band-gap as well as an enhanced electron cloud density in the internal space of the Li1/ZnO4 tetrahedra, thereby increasing the Q × f. In summary, Li+-enriched Li(1+0.06)2ZnTi3O8 ceramics are promising for a wide array of applications in microwave communications.  相似文献   

16.
《Ceramics International》2023,49(20):32635-32641
The optical contactless thermometer demonstrates remarkable advantages over traditional contact thermometers. However, maintaining a strong optical signal output across a wide temperature range poses a challenge due to the thermal quenching effect. In this study, we aimed to overcome the limitation of low signal intensity in high-temperature applications by developing a Pr3+-doped BaSc2Ge3O10 (BSGO) phosphor with anti-thermal quenching properties. This phosphor was designed to ensure a stable and sufficiently strong light signal for accurate temperature measurements. The phosphor exhibited a negative thermal quenching effect, where the integrated emission intensity spanning from 450 nm to 800 nm increased from 173 K to 253 K, and the intensity at 353 K still remained stronger than at 173 K. Multiple 4f-4f transition emissions were observed in the phosphor, and the fluorescence intensity ratio (FIR) was utilized as a standard parameter for temperature evaluation ranging from 82 K to 353 K. At 82 K, the phosphor achieved maximum relative sensitivity (Sr) of 2.3% K−1. The presence of multiple traps with depths ranging from 1.09 eV to 1.50 eV not only supported luminescence with a negative thermal quenching effect but also resulted in long persistent luminescence (LPL), which was systematically investigated in this study.  相似文献   

17.
We have developed a new broadband-sensitive photon upconversion (UC) material that can be used for transparent ceramic plates mounted on the rear faces of crystalline silicon solar cells. We selected the host material of a cubic crystal structure codoped with Er3+ and Ni2+ so that the Ni2+ dopants were fully activated to sensitize the Er3+ emitters. In garnet-type Ca3Ga2Ge3O12 with additional codopants of Nb5+ and Li+ for charge compensation, all the Ni2+ dopants occupied the six-coordinated Ga3+ sites, leading to highly efficient energy transfer from the Ni2+ to the Er3+. Formation of four-coordinated Ni2+ that quenches the UC emission of the Er3+ was prevented, because Ni2+ cannot substitute the four-coordinated Ge4+ much smaller than Ni2+. Consequently, energy dissipation from the Er3+ to the Ni2+ was well reduced compared with the previously developed Gd3Ga5O12:Er,Ni,Nb in which the Ni2+ dopants partially occupied the four-coordinated Ga3+ sites. Additional introduction of Y3+ and Li+ enhanced optical transitions and improved the UC performance, owing to more enhanced lattice distortion, along with eliminating different phases. The optimal composition (Ca0.6Er0.1Y0.1Li0.2)3(Ga0.98Ni0.01Nb0.01)2Ge3O12 exhibited a broadband sensitivity ranging from 1.1 μm (the absorption edge of silicon) to 1.6 μm for the UC emission at 0.98 μm.  相似文献   

18.
The upconversion (UC) luminescence of Li+/Er3+/Yb3+ co-doped CaWO4 phosphors is investigated in detail. Single crystallized CaWO4:Li+/Er3+/Yb3+ phosphor can be obtained, co-doped up to 25.0/5.0/20.0 mol% (Li+/Er3+/Yb3+) by solid-state reaction. Under 980 nm excitation, CaWO4:Li+/Er3+/Yb3+ phosphor exhibited strong green UC emissions visible to the naked eye at 530 and 550 nm induced by the intra-4f transitions of Er3+ (2H11/2,4S3/24I15/2). The optimum doping concentrations of Yb3+/Li+ for the highest UC luminescence were verified to be 10/15 mol%, and a possible UC mechanism that depends on the pumping power is discussed in detail.  相似文献   

19.
The structural and optical characteristics of Nd3+-Yb3+ doped CaF2 phosphors with and without the addition of Li+ ions are described in this work. The phosphors synthetized by hydrothermal and co-precipitation methods showed near-infrared (NIR) luminescence emission associated with inter-electronic transition of the Yb3+ ion in the range of 900–1050 nm via energy transfer process from Nd3+ ions under visible light excitation. The addition of Li+ to these phosphors resulted in an improvement of the NIR luminescence intensity by a factor up to 5. The effect of the incorporation of Li+ ions into the CaF2 crystallite structure, the reduction of luminescence quenching states, as well as the energy transfer mechanism involved are discussed.  相似文献   

20.
Systematic analysis of SiO2@CaTiO3:Dy3+(3 mol %):Li+(0.25–1 mol %) core shell nanoparticles (C–S NPs) were carried out. CaTiO3:Dy3+ (3 mol %), Li+ (0.25–1 mol %) NPs were prepared using low temperature solution combustion method. C–S structured samples were synthesized using SiO2 in equal weight quantities. All samples were characterised by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) in order to study and compare its structural properties. Photoluminescence (PL) properties of uncoated and SiO2 coated samples were studied in detail and optimum luminescence behaviour was investigated. Higher luminescence intensity is observed for codoped CaTiO3:Dy3+(3 mol %):Li+(0.5 mol %) sample. Further enhancement was observed in SiO2@CaTiO3:Dy3+:Li+ structured nanoparticles. Emission spectra of SiO2@CaTiO3:Dy3+(3 mol %):Li +(0.25–1.0 mol %) C–S nanophosphors exhibit white emission dominated by 4F9/2 → 6H13/2 (570 nm) transition of Dy3+ ions under. All the results suggested that the present material provides a platform for fabricating new functional materials which can be applied in the field of wLEDs and solid state display applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号