首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, rapid, sensitive and accurate method for the determination of metal impurities in detonation nanodiamond (DND), based upon the direct aspiration of aqueous suspensions of nanodiamond into a sector field inductively coupled plasma mass spectrometer (ICP-MS) is proposed. Quantitative release, atomisation and ionisation of the nanodiamond coated and encased elements, within the plasma, and their detection free from spectral interference, was confirmed by comparing results obtained from the direct ICP-MS analysis of aqueous suspensions with results from the ICP-MS analysis of the acidic digests of pre-ashed DND, obtained through DND combustion in air at 723 K for 48 h. The developed direct method was capable of the quantification of more than 30 elements at concentration levels of 10−8 wt.%, with acceptable levels of precision and accuracy, from an aqueous suspension of just 0.1 mg mL−1 DND.  相似文献   

2.
Li2TiO3 is a candidate material for tritium breeding in the future nuclear fusion reactor. In this study, Li2TiO3 powder was synthesized by ultrasonic-assisted solution combustion synthesis (USCS) in a single step. The ultrasonic transducer with the power of 1000 W was introduced in the synthesis process. The crystallite size of Li2TiO3 powder prepared by utilization of ultrasonic power is significantly decreased to ∼5.0 nm, while the one obtained without ultrasonic power is 20.0 nm. Li2TiO3 ceramic sintered from USCS powder at 800 °C exhibits the small grain size of 330 nm and the open pores size of 140 nm. The crush load of the ceramic reaches 37.2 N although the structure is porous. Compared with the ceramic prepared by solid-state reaction and conventional solution combustion synthesis, USCS sample has a higher conductivity of 2.0 × 10−6 S m−1 at room temperature, indicating the lower tritium diffusion barrier in the ceramic.  相似文献   

3.
Three novel catalysts named as PMo12  nVn@HKUST-1 (n = 1–3) were designed and obtained through encapsulating vanadium-doped Keggin polyoxometalates (POMs) PMo12  n Vn into the framework HKUST-1 (also denoted as Cu3(BTC)2, MOF-199). The character structure of PMo12  n Vn@HKUST-1 was elucidated through the single crystal XRD of PMo11V@HKUST-1. Reaction rate could be greatly enhanced by PMo12  n Vn@HKUST-1 in liquid hydroxylation of benzene with O2. Only in 20 min, a high TOF (44.2 h 1) of PMo9V3@HKUST-1 was obtained.  相似文献   

4.
《Ceramics International》2017,43(8):6117-6123
The thermoelectric properties and electronic structures were investigated on p-type BiCu1-xAgxSeO (x=0, 0.02, 0.05, 0.08) ceramics prepared using a two-step solid state reaction followed by inductively hot pressing. All the samples consist of single BiCuSeO phase with lamella structure and no preferential orientation exists in the crystallites. Upon replacing Cu+ by Ag+, maximum values of electrical conductivity of 36.6 S cm−1 and Seebeck coefficient of 350 μV K−1 are obtained in BiCu0.98Ag0.02SeO and BiCu0.92Ag0.08SeO, respectively. Nevertheless, a maximum power factor of 3.67 μW cm−1K−2 is achieved for BiCu0.95Ag0.05SeO at 750 K owing to the moderate electrical conductivity and Seebeck coefficient. Simultaneously, this oxyselenide exhibits a thermal conductivity as low as 0.38 W m−1 K−1 and a high ZT value of 0.72 at 750 K, which is nearly 1.85 times as large as that of the pristine BiCuSeO. The enhancement of thermoelectric performance is mainly attributed to the increased density of states near the Fermi level as indicated by the calculated results.  相似文献   

5.
《Ceramics International》2017,43(11):8538-8542
YMnO3 is a hexagonal crystal characterized by high carbon oxidation activity. In this study, carbon black powder has been directly oxidized at temperatures as low as 250 °C with the active oxygen species generated by YMnO3 catalyst. The activation energies measured for the non-catalyzed and YMnO3-catalyzed carbon oxidation reactions were 160 kJ mol−1 and 131 kJ mol−1, respectively. During combustion testing of particulate matter in a ceramic form coated with YMnO3, the captured soot was continuously purified at a temperature of 350 °C.  相似文献   

6.
The paper reports on the preparation of reduced graphene oxide (rGO) modified with nanodiamond particles composites by a simple solution phase and their use as efficient electrode in electrochemical supercapacitors. The technique relies on heating aqueous solutions of graphene oxide (GO) and nanodiamond particles (NDs) at different ratios at 100 °C for 48 h. The morphological properties, chemical composition and electrochemical behavior of the resulting rGO/NDs nanocomposites were investigated using UV/vis spectrometry, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM) and electrochemical means. The electrochemical performance, including the capacitive behavior of the rGO/NDs composites were investigated by cyclic voltammetry and galvanostatic charge/discharge curves at 1 and 2 A g−1 in 1 M H2SO4. The rGO/ND matrix with 10/1 ratio displayed the best performance with a specific capacitance of 186 ± 10 F g−1 and excellent cycling stability.  相似文献   

7.
Detonation-synthesized nanocrystalline diamond is a novel carbon material. Its increased electrical conductivity, due to the features of giant specific surface area and large numbers of surface defects as well as the cluster structure, makes it possible to be used as an electrode material. Nanodiamond powder electrodes were fabricated and the electrochemistry was investigated by cyclic voltammetry and AC impedance measurement. The results show that nanodiamond powder electrode is electrochemically stable in KCl electrolytes over a wide potential range (− 1.2–2.0 V). The electrode reaction is quasi-reversible in 0.1 M KCl containing the ferricyanide–ferrocyanide redox couple. The electrode reaction rate constant k is estimated to be 2.87 × 10 3 cm/s. The peak current increases linearly with the rising of the concentration of [Fe(CN)6]3−/4−. The AC impedance spectra have been analyzed and an equivalent circuit proposed.  相似文献   

8.
Fluorinated amorphous carbon (a–C:F) films have been deposited by electron cyclotron resonance chemical vapor deposition (ECR–CVD) at room temperature using C4F8 and CH4 as precursor gases. The chemical compositions and electrical properties of a–C:F films have been studied by X-ray photoelectron spectroscopy (XPS), capacitance–voltage (C–V) and current-voltage (IV) measurements. The results show that C–CFx and C–C species of a–C:F films increase and fluorine content decreases after annealing. The dielectric constant of the annealed a–C:F films increases as a result of enhancement of film density and reduction of electronic polarization. The densities of fixed charges and interface states decrease from 1.6 × 1010 cm 2 and (5–9) × 1011 eV 1 cm 2 to 3.2 × 109 cm 2 and (4–6) × 1011 eV 1 cm 2 respectively when a–C:F films are annealed at 300 °C. The magnitude of CV hysteresis decreases due to reduced dangling bonds at the a–C:F/Si interfaces after heat treatment. The conduction of a–C:F films shows ohmic behavior at lower electric fields and is explained by Poole–Frankel (PF) mechanism at higher electric fields. The PF current increases indicative of reduced trap energy when a–C:F films are subjected to higher annealing temperatures.  相似文献   

9.
《Ceramics International》2016,42(15):16956-16960
In this article, V2O5 with a novel nest-like hierarchical porous structure has been synthesized by a facile solvothermal method and investigated as cathode material for lithium-ion batteries. The nest-like V2O5 with a diameter of about 1.5 µm, was composed of interconnected nanosheets with a highly porous structure. Without other modification, the as-prepared V2O5 electrode exhibited superior capacity. An initial discharge capacity of 330 mAh g−1 (at a current density of 100 mA g−1) could be delivered and a stable discharge capacity of 240 mAh g−1 after 50 cycles is maintained. The excellent performance was attributed to the hierarchical porous structure that could buffer against the local volume change and shorten the lithium-ions diffusion distance.  相似文献   

10.
It is well established that argon rich plasmas (> 90% Ar) in Ar/CH4/H2 gas mixtures lead to (ultra)nanodiamond nucleation and growth by microwave plasma chemical vapour deposition (MPCVD). Nonetheless, in the present work, both microcrystalline and nanocrystalline diamond deposits developed under typical conditions for ultrananocrystalline (UNCD) growth by MPCVD. Silicon substrates were pretreated by abrasion using two different diamond powder types, one micrometric (< 0.5 μm) and the other nanometric (∼ 4 nm), the latter obtained by detonation methods. Samples characterization was performed by SEM (morphology), AFM (roughness and morphology) and micro-Raman (structure).For all samples, Raman analysis revealed good crystalline diamond quality with an evident ∼ 1332 cm 1 peak. The Raman feature observed at ∼ 1210 cm 1 is reported to correlate with two other common bands at ∼ 1140 cm 1 and ∼ 1490 cm 1 characteristic of nano- and ultra-nanocrystalline diamond.A new growth process is proposed to explain the observed morphology evolution from nano- to microcrystalline diamond. Based on this, the microcrystalline morphology is in fact a crystallographically aligned construction of nanoparticles.  相似文献   

11.
The composites of V2O3–ordered mesoporous carbon (V2O3–OMC) were synthesized and used as anode materials for Li-ion intercalation. These materials exhibited large reversible capacity, high rate performance and excellent cycling stability. For instance, a reversible capacity of V2O3–OMC composites was 536 mA h g−1 after 180 cycles at a current density of 0.1 A g−1. The high electrochemical performance of the V2O3–OMC composites is attributed to the anchoring of nanoparticles on mesoporous carbon for improving the electrochemical active of V2O3 particles for energy storage applications in high performance lithium-ion batteries.  相似文献   

12.
《Ceramics International》2017,43(7):5574-5578
The effects of yttrium (Y) additions (x=0, 0.05, 0.1, and 0.2) on the microstructure, chemical structure, and electrical properties of YxInSnOy (YITO) thin films, prepared using a sol-gel process were examined. The transmission electron microscopy (TEM) observations showed that the undoped InSnO (ITO) film consisted of an amorphous structure with local crystalline domains on the film surface, whereas the Y additions (x=0.05, 0.1, and 0.2) to ITO suppressed the formation of the crystalline phase. X-ray photoelectron spectroscopy (XPS) analysis showed that the Y content decreased the concentration of oxygen vacancies owing to the strong incorporation of Y with oxygen. As a result of the Y incorporation, the carrier concentration of ITO films decreased. The saturation mobility (μsat), the on-off ratios (Ion/off), and the sub-threshold swing (S.S) of YITO films were 1.1 cm2 V−1 s−1, ~106, and ~0.5 V decade−1, respectively, which are comparable with 1.7 cm2 V−1 s−1, ~105, and ~1.17 V decade−1 of ITO film. Additionally, the initial threshold voltage (VTH) was positive shift with increased of Y addition and VTH shift (ΔVTH) under the positive bias stress (PBS) results decreased by Y addition.  相似文献   

13.
《Ceramics International》2017,43(16):13224-13232
The present study reports on the one-pot synthesis of Ni3V2O8 (NVO) electrodes by a simple metal organic framework-combustion (MOF-C) technique for anode applications in Li-ion batteries (LIBs). The particle morphology of the prepared NVO is observed to vary as irregular rods, porous bitter gourd and hybrid micro/nano particles depending on the concentration of the framework linker used during synthesis. In specific, the orthorhombic phase and the unique bitter gourd-type secondary structure comprised of agglomerated nanoparticles and porous morphologies is confirmed using powder X-ray diffraction, electron microscopies, X-ray photoelectron spectroscopy and N2 adsorption–desorption measurements. When tested for lithium batteries as anode, the bitter gourd-type NVO electrode shows an initial discharge capacity of 1362 mA h g−1 and a reversible capacity of 822 mA h g−1 are sustained at a rate of 200 mA g−1 after 100 cycles. Moreover, at 2000 mA g−1, a reversible capacity of 724 mA h g−1 is retained after 500 cycles. Interestingly, the porous bitter gourd-shaped NVO electrode registered significantly high rate performance and reversible specific capacities of 764, 531 and 313 mA h g−1 at high rates of 1, 5 and 10 A g−1, respectively.  相似文献   

14.
We report a simple and effective route to convert graphene oxide sheets to good quality graphene sheets using hot pressing. The reduced graphene oxide sheets obtained from graphene oxide by low temperature thermal exfoliation are annealed at 1500 °C and 40 MPa uniaxial pressures for 5 min in vacuum. No appreciable oxygen content was observed from X-ray photoelectron spectroscopy and no D peak was detected in the Raman spectrum. The graphene sheets produced had a much higher electron mobility (1000 cm2 V−1 S−1) than other chemically modified graphenes.  相似文献   

15.
Recently we established a sintering approach, namely Cold Sintering Process (CSP), to densify ceramics and ceramic-polymer composites at extraordinarily low temperatures. In this work, the microstructures and semiconducting properties of V2O5 ceramic and (1-x)V2O5-xPEDOT:PSS composites cold sintered at 120 °C were investigated. The electrical conductivity (25 °C), activation energy (25 °C), and Seebeck coefficient (50 °C) of V2O5 are 4.8 × 10−4 S/cm, 0.25 eV, and −990 μV/K, respectively. The conduction mechanism was studied using a hopping model. A reversible metal-insulator transition (MIT) was observed with V2O5 samples exposed to a N2 atmosphere, whereas in a vacuum atmosphere, no obvious MIT could be detected. With the addition of 1–2 Vol% PEDOT:PSS, the electrical conductivity (50 °C) dramatically increases from 10−4 to 10−3  10−2 S/cm, and the Seebeck coefficient (50 °C) shifts from −990 to −(600  250) μV/K. All the results indicate that CSP may offer a new processing route for the semiconductor electroceramic development without a compromise to the all-important electrical properties.  相似文献   

16.
Nanofiber fabric is firstly introduced to replace common microfiber fabrics as the platform for flexible supercapacitors. Nanofiber and microfiber electrodes can be simply fabricated using a dipping process that impregnates reduced graphene oxide (RGO) nanosheets into electrospun polyamide-66 (PA66) nanofiber and microfiber fabrics. RGO nanosheets are tailored to various sizes and only RGO with a medium diameter of 250–450 nm (denoted as M-RGO) can effectively penetrate the pores of nanofiber fabrics for constructing smooth conductive paths within PA66 nanofiber fabrics. The synergistic effect between suitable sizes of RGO nanosheets and nanofiber fabrics with a high specific area provides a symmetric supercapacitor composed of M-RGO/PA66 nanofiber fabric electrodes with high-volume and high-area specific capacitance (CS,V and CS,A, equal to 38.79 F cm−3 and 0.931 F cm−2 at 0.5 A g−1, respectively), which are much larger than that of a symmetric supercapacitor composed of RGO/PA66 microfiber fabric electrodes (8.52 F cm−3 and 0.213 F cm−2 at 0.5 A g−1). The effect of impregnating nanofiber fabrics with suitably sized RGO to promote CS,V and CS,A of flexible supercapacitors has been demonstrated.  相似文献   

17.
《Ceramics International》2017,43(2):1968-1974
3D network-like porous MnCo2O4 nanostructures have been successfully fabricated through a facile and scalable sucrose-assisted combustion route followed by calcination treatment. Benefiting from its advantages of the unique 3D network-like architectures with large specific surface area (216.15 m2 g−1), abundant mesoporosity (2–50 nm) and high electronic conductivity, the as-prepared MnCo2O4 electrode displays a high specific capacitance of 647.42 F g−1 at a current density of 1 A g−1, remarkable capacitance retention rate of 70.67% at current density of 10 A g−1 compared with 1 A g−1, and excellent cycle stability (only 6.32% loss after 3000 cycles). The excellent electrochemical performances coupled with facile and cost effective method will render the as-fabricated 3D network-like porous MnCo2O4 as a promising electrode material for supercapacitors.  相似文献   

18.
A diamond-based field-effect transistor (FET) with SiNx and ZrO2 double dielectric layer has been demonstrated. The SiNx and ZrO2 gate dielectric are deposited by plasma-enhanced chemical vapor deposition (PECVD) and radio frequency (RF) sputter methods, respectively. SiNx layer is found to have the ability to preserve the conduction channel at the surface of hydrogen-terminated diamond film. The leakage current density (J) of SiNx/ZrO2 diamond metal-insulator-semiconductor FET (MISFET) keeps lower than 3.88 × 10 5 A·cm 2 when the gate bias was changed from 2 V to − 8 V. The double dielectric layer FET operates in a p-type depletion mode, whose maximum drain-source current, threshold voltage, maximum transconductance, effective mobility and sheet hole density are determined to be − 28.5 mA·mm 1, 2.2 V, 4.53 mS·mm 1, 38.9 cm2·V 1·s 1, and 2.14 × 1013 cm 2, respectively.  相似文献   

19.
Sr2MgMo1  xVxO6  d (x = 0–0.2) materials with double perovskite structure were synthesized by sol–gel method, and studied for the possibility of being the anode of solid oxide fuel cells (SOFCs) with biogas as the direct fuel. The sample of Sr2MgMo0.95V0.05O6  d synthesized in 5%H2/Ar showed a conductivity higher than the samples with x > 0.05, but close to the sample without V. Besides, it showed better catalytic activity, stability, and H2S tolerance (up to 1% of H2S in the feed gas) for biogas combustion than the sample without V. This sample is promising for the anode of SOFCs using biogas fuel.  相似文献   

20.
The sinterability of compositions from different powder preparation methods (coprecipitation-coating of Si3N4 powder or mechanical mixing of Si3N4 with Y2O3 and Al2O3) and compaction routes (dry pressing or slip casting) was compared. Both the coating method and the slip casting process improved silicon nitride sinterability over the mechanical mixing method and dry pressing route. However, the minimisation of powder agglomeration in the green bodies achieved by slip casting is more determinant to the sintering behaviour than the homogeneous distribution of the sintering additives around the Si3N4 offered by the coated powder. The coating powder method in combination with the slip casting process is the most favourable processing route, leading to a homogeneous and fully dense microstructure by pressureless sintering at a relatively low temperature of 1750°C. This technique produced materials with hardness of 15·2 GPa, fracture toughness of 7 MPa  m1/2 and flexural bending strength of 910 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号