首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have measured photoluminescence properties of cerium-doped Gd3Al2Ga3O12 (Ce:GAGG) crystals at low temperatures with use of synchrotron radiation. Excitation spectra for the Ce3+ 5d–4f emission exhibit prominent peaks at Gd3+ intra-4f absorption bands. The Gd3+ intra-4f emission band is observed at 3.91 eV, but is not in resonance with the lowest energy Gd3+ intra-4f absorption band at 3.95 eV. The temperature dependence of the Gd3+ emission intensity is not correlated with that of the Ce3+ emission intensity. Decay curves of the Ce3+ emission were also measured at 9 K under excitation at various photon energies. The decay curve is remarkably changed, depending on the excitation photon energies. The present results give us hints to understand the whole of energy transfer processes in Ce:GAGG crystals.  相似文献   

2.
Nd 1% doped complex garnet scintillators were prepared by Furukawa and their optical and scintillation properties were investigated on a comparison with previously reported Nd-doped YAG. Chemical compositions of newly developed complex garnets were Lu2Y1Al5O12, Lu2Y1Ga3Al2O12, Lu2Gd1Al5O12, Lu2Gd1Ga3Al2O12, Gd1Y2Al5O12, Gd1Y2Ga3Al2O12, and Gd3Ga3Al2O12. They all showed 50–80% transmittance from ultraviolet to near infrared wavelengths with several absorption bands due to Gd3+ or Nd3+ 4f–4f transition. In X-ray induced radioluminescence spectra, all samples exhibited intense lines at 310 nm due to Gd3+ or 400 nm due to Nd3+ depending on their chemical composition. Among them, the highest scintillation light yield was achieved by Lu2Y1Al5O12. Typical scintillation decay times of them resulted 1.5–3 μs. Thermally stimulated glow curve after 1 Gy exposure and X-ray induced afterglow were also investigated.  相似文献   

3.
Single-crystal gadolinium gallium garnet films have been grown by liquid-phase epitaxy on (111) Gd3Ga5O12 substrates from supercooled Bi2O3-B2O3 fluxed melts at different Gd2O3 concentrations. The luminescence spectra of the films have been measured at 10 and 300 K under unmonochromatized synchrotron X-ray excitation and selective UV synchrotron excitation. The Bi3+ luminescence is discussed.  相似文献   

4.
Shaped single crystals of (Yb0.05LuxGd0.95−x)Ga5O12 (0.0x0.9) and Yb0.15Gd0.15Lu2.7(AlxGa1−x)O12 (0.0x1.0) were grown by the modified micro-pulling-down method. Continuous solid solutions with garnet structure and a linear compositional dependency of crystal lattice parameter in the system Yb:(Gd,Lu)3(Ga,Al)5O12 are formed. Measured optical absorption spectra of the samples show 4f–4f transitions related to Gd3+ ion at 275 and 310 nm, and also an onset of charge transfer transitions from oxygen ligands to Gd3+ or Yb3+ cations below 240 nm. A complete absence of Yb3+ charge transfer luminescence under X-ray excitation in any of the investigated samples was explained by the overlapping of charge transfer absorption of Yb3+ by that of Gd3+ ions. For specific composition of Lu1.5Gd1.5Ga5O12 an intense defect––host lattice-related emission, which achieve of about 40% integrated intensity compared with Bi4Ge3O12, was found.  相似文献   

5.
《Materials Letters》2004,58(27-28):3432-3436
The Mössbauer spectroscopy of Gd2.2Pr0.8Fe5O12 garnet, which exhibits higher electronic conduction with respect to Gd3Fe5O12 due to the presence of Pr4+ cations, showed that praseodymium doping decreases the coordination of Fe3+ in octahedral sites. Penta-coordinated Fe3+ ions, in combination with small quantities of Fe4+, are also formed in the lattice of Gd2.5Ca0.5Fe5O12 where the variations of ionic and electronic transport properties indicate charge compensation via generation of oxygen vacancies and electron holes. The mechanisms of garnet lattice disorder, induced by acceptor- and donor-type doping, appear thus quite similar; in all cases, the ionic defect formation requires substantial structural reconstruction, probably associated with direct linking of iron–oxygen tetrahedra. Due to the low concentration of charge carriers and the important role of lattice relaxation in the oxygen ion migration processes, this behavior results in similar activation energies for the ionic conductivity in all Gd3Fe5O12-based garnets.  相似文献   

6.
Single-crystal gadolinium gallium garnet films containing Bi impurity are grown on (111) Gd3Ga5O12 substrates by liquid-phase epitaxy from Bi2O3–B2O3 fluxes. The absorption spectra of the films are measured from 0.2 to 1.5 m. The effect of Bi3+ impurity on the optical absorption in the films is examined.  相似文献   

7.
Abstract

Ce3+-activated Gd3Al5O12 garnet, effectively stabilized by Lu3+ doping, has been developed for new yellow-emitting phosphors. The powder processing of [(Gd1?xLux)1?yCey]3Al5O12 solid solutions was achieved through precursor synthesis via carbonate precipitation, followed by annealing. The resultant (Gd,Lu)AG:Ce3+ phosphor particles exhibit typical yellow emission at ~570 nm (5d–4f transition of Ce3+) upon blue-light excitation at ~457 nm (the 2F5/2–5d transition of Ce3+). The quenching concentration of Ce3+ was determined to be ~1.0 at% (y = 0.01) and the quenching mechanism was suggested to be driven by exchange interactions. The best luminescent [(Gd0.9Lu0.1)0.99Ce0.01]AG phosphor is comparative to the well-known YAG:Ce3+ in emission intensity but has a substantially red-shifted emission band that is desired for warm-white lighting. The effects of processing temperature (1000–1500 °C) on the spectroscopic properties of the phosphors, especially those of Lu3+/Ce3+, were thoroughly investigated and discussed from the centroid position and crystal field splitting of the Ce3+ 5d energy levels.  相似文献   

8.
《Optical Materials》2014,36(12):2480-2485
Recent study revealed that single crystal Ce:Gd3(Al,Ga)5O12 (Ce:GAGG) showed good scintillation response under γ-ray exposure. We discover here that ceramic Ce:GAGG scintillator exhibited better performance than the single crystal counterpart. We developed Ce 1% doped ceramic and single crystal GAGG scintillators with 1 mm thick and compared their properties. In radioluminescence spectra, they showed intense emission peaking at 530 nm due to Ce3+ 5d–4f transition. The 137Cs γ-ray induced light yields of ceramic and single crystal resulted 70 000 ph/MeV and 46 000 ph/MeV with primary decay times of 165 and 143 ns, respectively. At present, the observed light yield was the brightest in oxide scintillators.  相似文献   

9.
The paper demonstrates our last achievement in development of the novel scintillating screens based on single crystalline films (SCF) of Ce doped multicomponent garnets using the Liquid Phase Epitaxy (LPE) method. We report in this work the optimized content and excellent scintillation properties of SCF of Lu3-xGdxAl5-yGayO12, Lu3-xTbxAl5-yGayO12 and TbxGdxAl5-yGayO12 garnet compounds grown by the LPE method from PbOB2O3 based melt-solution onto Gd3Al2.5Ga2.5O12 and YAG substrates.We also show that the Tb1.5Gd1.5Al2.5Ga2.5O12:Ce SCF possess the highest light yield (LY) in comparison with all ever grown garnet SCF scintillators. Namely, the LY of these SCF exceeds by 3.8 and 1.85 times the LY values of the best samples of YAG:Ce and LuAG:Ce SCF scintillators, respectively. The SCF samples of the mentioned compounds show low thermoluminescence in the above room temperature range and relatively fast scintillation decay time t1/e in the 180–200 ns range.  相似文献   

10.
《Materials Research Bulletin》2013,48(11):4687-4692
Epitaxial films of Ce-doped Gd3(AlxGa1−x)5O12 with x = 0.00, 0.22, 0.31, 0.38 formula units were grown using liquid-phase epitaxy method, and their optical properties were studied. The emission of Ce3+ ions can be observed only when Al3+ ions are incorporated into the garnet structure, resulting in a shift of the 5d Ce3+ states from the conduction band to the bandgap. It is shown that the shift is caused by the cumulative effect of gradual low-energy shift of the lowest 5d level of Ce3+ and the raise of the garnet bandgap energy with increasing Al3+ concentration.  相似文献   

11.
Characteristics and synthesis mechanism of Gd2O2S:Tb phosphors prepared by vacuum firing were investigated by photoluminescence (PL) spectra, X-ray diffraction (XRD), scanning electronic microscopy (SEM) and transmission electron microscopy (TEM). The mixtures of raw materials were tested by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The firing temperature was reduced to about 725 °C by the vacuum firing method. The particle size decreased. Meanwhile the particle size distribution and morphology were improved and the luminescence of Gd2O2S:Tb phosphors was also enhanced as the degree of vacuum decreases. With the decrease of the degree of vacuum, the intensity of the excitation spectrum was strengthened and the band was widened being the particle size of the host lattice decreased to nano scales. The peak with high intensity around 272 nm in the excitation spectra (λEm = 545 nm) of Gd2O2S:Tb nanophosphor may be attributed to the 4d–5f transitions of Gd atoms, which may play a significant role in the energy transfer between Tb3+ and Gd3+ ions.5D47FJ transitions of Tb3+ ion were mainly concentrated in the narrow green emission spectrum (535–555 nm) with its sharp peak at 545 nm. The synthesis mechanism of Gd2O2S:Tb phosphors prepared by vacuum firing was also studied.  相似文献   

12.
Structural perfection of gadolinium gallium garnet (GGG; Gd3Ga5O12) epitaxial layers with incorporated divalent Co ions has been studied by means of high resolution X-ray diffraction, X-ray topography, transmission electron microscopy and optical spectroscopy. Epitaxial layers were grown by liquid phase epitaxy from super-cooled high temperature solution with different concentration of Co3O4 and GeO2 on both sides of the polished < 111> oriented GGG substrates. In order to facilitate incorporation of Co2+ ions into the garnet lattice optically inert Ge4+ ions have to be introduced first. High structural perfection is a prerequisite to obtain absorption spectra required for the use GGG epitaxial layers as tunable infrared absorbers.  相似文献   

13.
Gd2Ti2O7: Eu3+ thin film phosphors were fabricated by a sol-gel process. X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 800 °C and the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free phosphor films were obtained, which mainly consisted of grains with an average size of 70 nm. The doped Eu3+ showed orange-red emission in crystalline Gd2Ti2O7 phosphor films due to an energy transfer from Gd2Ti2O7 host to them. Both the lifetimes and PL intensity of the Eu3+ increased with increasing the annealing temperature from 800 to 1000 °C, and the optimum concentrations for Eu3+ were determined to be 9 at.%. of Gd3+ in Gd2Ti2O7 film host.  相似文献   

14.
The Ca0.5% and Ce1%, 3%, 7%, 10% co-doped Gd0.5Y0.5F3 single crystals were grown by the μ-PD method. In the Ca0.5% and Ce3% co-doped sample, Ce3+-perturbed luminescence at 380 nm was observed with 32.4 ns photoluminescence decay time. The energy transfer in the sequence of the regular Ce3+→ (Gd3+)n→ the perturbed Ce3+ sites was evidenced through observation of decay time shortening of the regular Ce3+ and Gd3+ centers and the change between the Gd3+ and Ce3+-perturbed emission intensity. The gamma-ray excited scintillation response of the Ca0.5%, Ce7% co-doped Gd0.5Y0.5F3 sample was investigated with the help of the pulse height spectra and the light yield, energy resolution and non-proportionality was evaluated in the interval of energies of 59.4-1274 keV.  相似文献   

15.
Scintillation properties of Tm-doped Lu3Al5O12 single crystals   总被引:1,自引:0,他引:1  
Using the micro-pulling-down (μ-PD) method, Tm-doped Lu3Al5O12 (Tm:LuAG) single crystals were grown to examine their scintillation properties. In transmittance spectra, they exhibited about 80% transparency in the wavelengths longer than 320 nm and five absorption lines due to Tm3+ 4f–4f transitions were observed. 241Am α-ray excited radioluminescence spectra were measured and intense 4f–4f emission peaks were observed with the host emission. When excited by 137Cs γ-Ray to obtain pulse height spectra, Tm 1% doped LuAG showed the highest light yield coupled with a photomultiplier (PMT) or a silicon avalanche photodiode (Si-APD). The light yield was estimated to be 5800 and 7300 photons/MeV for PMT and Si-APD, respectively. Decay time profiles consist of two exponential components and the fast and slow components are considered to be attributed to the host and the combination of the host and Tm3+ 4f–4f emission, respectively.  相似文献   

16.
Eu3+ and Tb3+ co-doped Gd2O3 films were elaborated by sol–gel process and dip-coating technique. The films were synthesized by hydrolysis of gadolinium pentanedionate. A homogeneous and stable sol was obtained by the reaction with acetylacetone. Gd2O3:Eu3+, Tb3+ films were crystallized around 500 °C; at an increase of temperature up to 700 °C, oriented growth of (4 0 0) face was observed. The obtained transparent Gd2O3: 2.5 at.% Eu3+, 0.005 at.% Tb3+ waveguide films at 700 °C display significant optical properties. Different crystallographic properties can be obtained in Gd2O3:Eu3+, Tb3+ films with varying sintering temperatures.  相似文献   

17.
Lu3Al5O12:Ce3+ phosphor powder, which exhibits green emission band, was synthesized by the high-temperature solid-state reaction method with a flux BaF2. X-ray diffraction (XRD), photoluminescence (PL) spectra, and fluorescent lifetime spectra were used to characterize the structure and luminescent properties of the sample. The XRD patterns indicated that when prepared at 1550 °C for 3 h with 4 wt% flux, Lu3Al5O12:Ce3+ phosphors powder is the garnet cubic crystal system structure. Photoluminescence (PL) spectra showed that the Lu3Al5O12:Ce3+ phosphor powder can be effectively excited by near ultraviolet and blue light, emitting broad band peaking at 505 nm, which is attributed to 2F5/2?→?2D5/2 transition. The self-concentration quenching mechanism of Ce3+ is the dipole–dipole interaction. Small amount of Pr3+ increased red light emission at 610 nm. Photoluminescence (PL) spectra and fluorescent lifetime spectra indicated that there was an efficient energy transfer process between Ce3+ and Pr3+.  相似文献   

18.
Ce and Eu doped LiSrAlF6 (LiSAF) single crystals for the neutron detection with different dopant concentrations were grown by the micro-pulling-down method (μ-PD). In Ce:LiSAF, intense emission peaks due to Ce3+ 5d-4f transitions were observed at approximately 315 and 335 nm in photo- and α-ray induced radio-luminescence spectra. In case of Eu:LiSAFs, an intense emission peak at 375 nm due to Eu2+ 5d-4f transition was observed in the radio-luminescence spectra. The pulse height spectra and decay time profiles were measured under 252Cf neutron irradiation to examine the neutron response. The Ce 3% and Eu 2% doped LiSAF showed the highest light yield of 2860 ph/n with 19 ns main decay time component and 24,000 ph/n with 1610 ns.  相似文献   

19.
Abstract

The metastable garnet lattice of Gd3Al5O12 is stabilized by doping with smaller Lu3+, which then allows an effective incorporation of larger Eu3+ activators. The [(Gd1?xLux)1?yEuy]3Al5O12 (x = 0.1–0.5, y = 0.01–0.09) garnet solid solutions, calcined from their precursors synthesized via carbonate coprecipitation, exhibit strong luminescence at 591 nm (the 5D07F1 magnetic dipole transition of Eu3+) upon UV excitation into the charge transfer band (CTB) at ~239 nm, with CIE chromaticity coordinates of x = 0.620 and y = 0.380 (orange-red). The quenching concentration of Eu3+ was estimated at ~5 at.% (y = 0.05), and the quenching was attributed to exchange interactions. Partial replacement of Gd3+ with Lu3+ up to 50 at.% (x = 0.5) while keeping Eu3+ at the optimal content of 5 at.% does not significantly alter the peak positions of the CTB and 5D07F1 emission bands but slightly weakens both bands owing to the higher electronegativity of Lu3+. The effects of processing temperature (1000–1500 °C) and Lu/Eu contents on the intensity, quantum efficiency, lifetime and asymmetry factor of luminescence were thoroughly investigated. The [(Gd0.7Lu0.3)0.95Eu0.05]3Al5O12 phosphor processed at 1500 °C exhibits a high internal quantum efficiency of ~83.2% under 239 nm excitation, which, in combination with the high theoretical density, favors its use as a new type of photoluminescent and scintillation material.  相似文献   

20.
The conjugation of Eu3+‐doped coordination polymers constructed from Gd3+ and isophthalic acid (H2IPA) with silica particles is investigated for the production of luminescent microspheres. A series of doping ratio‐controlled silica@coordination polymer core–shell spheres is easily synthesized by altering the amounts of metal nodes used in the reactions, where the ratios of Gd3+ and Eu3+ are 10:0 ( 1a ), 9:1 ( 1b ), 8:2 ( 1c ), 7:3 ( 1d ), 5:5 ( 1e ), and 0:10 ( 1f ). The formation of monodisperse uniform core–shell structures is achieved throughout the entirety of a series. Investigations of the photoluminescence property of the resulting series of silica@coordination polymer core–shell spheres reveal that 20% Eu3+‐doped product ( 1c ) has the strongest emission intensity. The subsequent calcination process on the silica@coordination polymer core–shell structures ( 1a ‐ f ) results in the formation of a series of doping ratio‐controlled silica@Gd2O3:Eu core–shell microspheres ( 2a ‐ f ) with uniform shell thickness. During the calcination step, the coordination polymers within silica@coordination polymer core–shells are transformed into metal oxides, resulting in silica@Gd2O3:Eu core–shell structures. The final etching process on the silica@Gd2O3:Eu core–shell microspheres ( 2a ‐ f ) produces a series of hollow Gd2O3:Eu microspheres ( 3a ‐ f ) as a result of the elimination of silica cores. The luminescence intensities of silica@Gd2O3:Eu core–shell ( 2a ‐ f ) and hollow Gd2O3:Eu microspheres ( 3a ‐ f ) also vary depending upon the doping ratio of Eu3+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号