首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the extraction of jojoba seed oil obtained from jojoba seed using both supercritical CO2 and supercritical CO2+ethanol mixtures was investigated. The recovery of jojoba seed oil was performed in a green and high-tech separation process. The extraction operating was carried out at operating pressures of 25, 35 and 45 MPa, operating temperatures of 343 and 363 K, supercritical fluid flow rates of 3.33 × 10−8, 6.67 × 10−8 and 13.33 × 10−8 m3 s−1, entrainer concentrations of 2, 4 and 8 vol.%, and average particle diameters of 4.1 × 10−4, 6.1 × 10−4, 8.6 × 10−4 and 1.2 × 10−3 m. It was found that a green chemical modifier such as ethanol could enhance the solubilities, initial extraction rate and extraction yield of jojoba seed oil from the seed matrix as compared to supercritical CO2. In addition, it was found that the solubility, the initial extraction rate and the extraction yield depended on operating pressure and operating temperature, entrainer concentration, average particle size and supercritical solvent flow rate. The solubility of jojoba seed oil and initial extraction rate increased with temperature at the operating pressures of 35 and 45 MPa and decreased with increasing temperature at the operating pressure of 25 MPa. Furthermore, supercritical fluid extraction involved short extraction time and minimal usage of small amounts entrainer to the CO2. About 80% of the total jojoba seed oil was extracted during the constant rate period at the pressure of 35 and 45 MPa.  相似文献   

2.
The present work deals with the application of the supercritical fluid extraction process to extract essential oils from the leaves of an Algerian myrtle plant (Myrtus communis L.). Using the surface response methodology, an optimization of the extraction recovery was carried out, varying the pressure in the range of [10–30 MPa], the temperature within [308–323 K], a solvent flow rate fixed at 0.42 kg h−1 and a mean particle diameter equal to 0.5 mm or less than 0.315 mm. The maximum value of essential oil recovery relative to the initial mass of leaf powder was 4.89 wt%, and was obtained when the SC–CO2 extraction was carried out under 313 K, 30 MPa and with a particle diameter less than 0.315 mm. A second-order polynomial expression was used to express the oil recovery. The calculated mass of recovered oil using the response surface methodology was very close to the experimental value, confirming the reliability of this technique.  相似文献   

3.
Supercritical carbon dioxide extraction of Gac (Momordica cochinchinensis Spreng) aril was performed at pressures ranging from 200 to 400 bar, temperatures from 313 to 343 K and specific flow rates from 50 to 90 kg h−1 CO2 kg−1 Gac aril. Total oil recovery and carotenes concentration were investigated in the course of extraction. Mathematical modelling of oil solubility data was also performed. The results showed that at specific flow rate of 70 kg h−1 kg−1, pressure of 400 bar and temperature of 343 K, Gac oil recovery exceeded 95% after 120 min of extraction. Gac oil loading of supercritical carbon dioxide was successfully described by Chrastil's model. Carotenes concentration of extracted Gac oil was found at level of thousands of ppm.  相似文献   

4.
The production of biodiesel or fatty acid esters (FAE) from lipids with supercritical methanol (scMeOH) has gained interest in the last decade because it allows the direct transesterification of crude oils and fats. The reaction should be carried out above 593 K in order to achieve complete conversion. When milder conditions are set, also monoglycerides (MG) and diglycerides (DG), together with glycerol, are obtained as byproducts of the transesterification process. Acylglycerols are common food emulsifiers and surface active agents in many industrial cleaning products.The main goal of this work is to study the fractionation of FAE and acylglycerols by using CO2 as a green solvent. Mixtures of FAE, MG and DG were produced by partial transesterification of sunflower oil with scMeOH in a temperature range of 556–605 K and using different methanol to oil molar ratios (between 20 and 50). Then, experimental data on phase equilibria of reaction products + CO2 were measured at 298 K and 313 K in a variable volume cell with windows. The measured data were used to test the predictive capability of the Group Contribution with Association Equation of State (GCA-EoS). The acylglycerols can be purified by near critical extraction of the FAE with CO2. The simulation of the extraction process working with CO2, in liquid or supercritical state, gives a concentration of acylglycerols higher than 99.8 wt.% in the raffinate phase with a concentration of FAE above 97 wt.% in the extract phase.  相似文献   

5.
An analytical apparatus has been designed to study the phase behavior of fluid mixtures of relevance to CO2-enhanced oil recovery and carbon dioxide storage in deep aquifers or depleted oil fields. The fluid phases are circulated by means of a dual-channel magnetically-coupled pump and aliquots may be withdrawn from the re-circulation loops, by means of high-pressure sampling valves, for analysis by gas chromatography. The high-pressure cell is fitted with a special probe that may be rotated in order to draw liquid into the re-circulation loop from different heights within the cell, thereby permitting the study of three-phase vapor–liquid–liquid equilibria. The working temperature range of the apparatus is from (298 to 448) K and the maximum working pressure is 50 MPa.In this work, measurements have been made on the binary system (CO2 + H2O) at temperatures from (298.15 to 448.15) K and pressure from (1.5 to 18.0) MPa, and the results are compared with the available literature data. Vapor–liquid–liquid and liquid–liquid equilibrium points were also measured at T = 298.15 K. Standard uncertainties were 0.04 K for temperature, 0.04% of reading for pressure, and typically 3 × 10−4 and 8 × 10−4 for the mole fractions in liquid and vapor phases respectively. The results have been correlated by means of an asymmetric approach based on the Peng–Robinson equation of state, for the vapor phase, and an extended form of Henry's law incorporating the NRTL solution model, for the aqueous liquid-phase. The ability of the Krichevsky–Kasarnovsky (KK) approach to correlate the data has also been evaluated.  相似文献   

6.
The separation of fat from rendered materials has potential for value-added products, fuels and feed sources for animals. Current industrial processes utilize continuous screw pressing to extract fat from rendered materials, but the ability to minimize residual fat content is limited. In this work, liquid and supercritical CO2 were used to extract the remaining fat from rendered poultry meal. CO2 extraction offers high extraction yields with potential ecological and economic benefits for the rendering industry. A semi-batch extraction unit was used to investigate the effect of pressure (69–345 bar), temperature (25 °C, 40 °C and 50 °C), flow rate, and mass of CO2 on the extraction yield and the fat solubility. Maximum extraction yields between 87% and 97% were obtained which produced a remaining fat content of 1.0 ± 0.3 wt% in the extracted poultry meal. Fat solubility increased with pressure but decreased with temperature, providing liquid CO2 with the highest fat solubility (6.47 g/L) at 25 °C and 345 bar. The Chrastil model successfully correlated the solubility data as a function of density and temperature, obtaining an AARD value of 5.56%. Gas chromatography was used to analyze the composition of fatty acids, obtaining similar results with those reported in the literature. It can be concluded that high fat extraction yields can be obtained using CO2 and that liquid CO2 is more effective than supercritical CO2 for the extraction of rendered fats under the conditions tested.  相似文献   

7.
A setup based on a static visual synthetic method for determining phase equilibria up to 100 MPa is presented. Solubilities of carbon dioxide (CO2) in a high-oleic sunflower oil (HOSO) and in an additivated vegetable lubricant (BIO-2T-05) were determined from 298 K to 363 K up to CO2 mass compositions of 0.42. The experimental device was verified comparing the solubilities of CO2 in HOSO with values from other laboratory. For both systems, the values of CO2 solubility show cross-over pressures among the different isotherms. A new equation was used to correlate the solubility data, with deviations in CO2 mole fraction in the oil-rich phase lower than 1.6%. The prediction ability of Carvalho and Coutinho equation was tested with experimental data. Vapor–liquid–liquid equilibria were also investigated for CO2 + BIO-2T-05 in the range 288–305 K. Furthermore, densities and viscosities at 0.1 MPa for BIO-2T-05 were measured from 278 K to 373 K.  相似文献   

8.
We report experimental measurements of the phase behavior of (CO2 + H2O + NaCl) and (CO2 + H2O + KCl) at temperatures from 323.15 K to 423.15 K, pressure up to 18.0 MPa, and molalities of 2.5 and 4.0 mol kg−1. The present study was made using an analytical apparatus and is the first in which coexisting vapor- and liquid-phase composition data are provided. The new measurements are compared with the available literature data for the solubility of CO2 in brines, many of which were measured with the synthetic method. Some literature data show large deviations from our results.The asymmetric (γφ) approach is used to model the phase behavior of the two systems, with the Peng–Robinson equation of state to describe the vapor phase, and the electrolyte NRTL solution model to describe the liquid phase. The model describes the mixtures in a way that preserves from our previous work on (CO2 + H2O) the values of the Henry's law constant and the partial molar volume of CO2 at infinite dilution Hou et al. [22]. The activity coefficients of CO2 in the aqueous phase are provided. Additionally, the correlation of Duan et al. [14] for the solubility of CO2 in brines is tested against our liquid-phase data.  相似文献   

9.
The aim of this research was to investigate the phase equilibrium behavior of a system containing guaçatonga extract + ethanol + CO2 in order to help define the adequate conditions of temperature and pressure for the co-precipitation process, performed by means of supercritical anti-solvent (SAS) technique. Guaçatonga (Casearia sylvestris) is a native medicinal plant from Brazil, rich in valuable components such as β-caryophyllene, α-humulene and bicyclogermacrene. Phase equilibrium data were obtained by the static method using guaçatonga extract dissolved in ethanol (1:100, wt/wt), at temperatures ranging from 35 to 75 °C and CO2 mass content from 60 to 90 wt%. It was noticed that the system exhibited solid–vapor–liquid, solid–liquid–liquid and solid–vapor–liquid–liquid transition types and a lower critical solution temperature behavior. Phase behavior study was considered for the definition of the SAS conditions applied for the encapsulation of guaçatonga extract in the biopolymer Pluronic F127. The conditions tested ranged from 80 to 140 bar at 45 °C. At 80 bar only segregated particles of extract and the biopolymer were detected, while at 110 and 140 bar an extract encapsulation was achieved.  相似文献   

10.
Extraction of sunflower oil from sunflower seeds (Heliantus annuus L.) using supercritical CO2 was studied. The shrinking core model was applied to the modeling of the packed-bed extraction process. The experimental data were obtained for extraction conducted at the pressures of 20, 30, 40, 50 and 60 MPa; the temperatures of 313, 333 and 353 K, the CO2 flow rates of 1–4, and 6 cm3 CO2 min−1; the mean particle diameters of 0.23, 0.55, 1.09, 2.18 mm. The supercritical CO2 extraction process was modeled by a quasi steady state model as a function of extraction time, pressure, temperature, CO2 flow rate, and particle diameter. The supercritical CO2 extraction process. The intraparticle diffusion coefficient (effective diffusivity) De was used as adjustable parameter. The model using the best fit of De was correlated the data satisfactorily.  相似文献   

11.
The objective of this work was to study production costs for the supercritical CO2 extraction of a pre-pressed oilseed (packed bed with 2-mm particles) in a 2-m3 industrial multi-vessel plant operating at 40 °C and 30 MPa, using a fully predictive mass transfer model to simulate the process. We modified the inner diameter (47.3  D  65.6 cm) and number (n = 2, 3, or 4) of extraction vessels, and the mass flow rate of CO2 (Q = 3000 or 6000 kg/h), thus changing the aspect ratio of the extraction vessels (3  L/D  8), and superficial velocity (2.71  U  10.8 mm/s) and specific mass flow rate (6  q  24 kg/h per kg substrate) of CO2. Production cost decreased when increasing the mass flow rate of CO2 or the number of extraction vessels (or when increasing q). Production cost did not depend on the geometry of extraction vessel for a constant specific mass flow rate of CO2, but it decreased with a decreasing of the L/D ratio of the vessel for a constant superficial velocity of CO2. For any given plant, the contribution of fixed cost items (capital, labor) to the production cost increased with extraction time, unlike that of variable cost items (substrate, CO2, energy), which decreased. Thus, there was an optimal extraction time that minimized production cost for each plant. This work proposes an expression for capital cost of an industrial multi-vessel plant as a function of the mass flow rate of CO2 (which defines the cost of the solvent cycle of the plant), and the volume of the extraction vessels (which together with number of extraction vessels define the cost of extraction section of the plant), with a scaling factor of 0.48 for both items. Under optimal conditions, capital cost represented 30–40% of the production cost, but uncertainties in capital cost estimates (about ±50% using the proposed expression) may largely affect these estimates. The lowest production cost estimated in this work was USD 7.8/kg oil for the extraction of prepressed oilseed in a four-vessel plant using 6000 kg/h of CO2. The mass flow rate of CO2 and number of extraction vessels also affected annual productivity that was about 360 ton oil for the same plant operating 7200 h per year. Oil yields were above 90% for both three- and four-vessel plants.  相似文献   

12.
In order to improve the efficiency of processes using supercritical (sc) carbon dioxide (CO2) to micronize the carotenoid “lycopene”, it is important to know the solubility of lycopene in mixtures of the organic solvent ethyl acetate (EA) and the antisolvent CO2 at elevated pressures. The solubility of lycopene has been determined for different temperatures (313–333 K), pressures (12–16 MPa) and CO2 molar fractions (0.58–1). The obtained data show that CO2 acts as an antisolvent in the system lycopene/EA/CO2 in the range of CO2/EA ratios studied. The solubility of lycopene is rather small with lycopene molar fractions ranging from 0.1 × 10−6 to 46 × 10−6. The solubility of lycopene increases with temperature, pressure and EA concentration.  相似文献   

13.
Recovery of phytosterol from roselle (Hibiscus sabdariffa L.) seeds via supercritical carbon dioxide extraction modified with ethanol was investigated at pressures of 200–400 bar, temperatures from 40 to 80 °C and at supercritical fluid flow rates from 10 to 20 ml/min. It was found that an entrainer such as ethanol could enhance the solubility and extraction yield of roselle seed oil from the seed matrix, compared to values obtained using supercritical CO2. After a typical run (holding period of 30 min, continuous flow extraction of 3 h), the results indicate that the oil recovery was optimal with a recovery of 108.74% and a phytosterol composition of 7262.80 mg kg?1 at relatively low temperature of 40 °C, a high pressure of 400 bar and at a high supercritical fluid flow rate of 20 ml/min in the presence of 2 ml/min EtOH as entrainer. The solubility of roselle seed oil increased with temperature at the operating pressures of 200, 300 and 400 bar. Supercritical fluid extraction involved a short extraction time and the minimal usage of small amounts of entrainer in the CO2.  相似文献   

14.
We have conducted experiments to obtain cloud-point data of binary and ternary mixtures for poly(isobornyl acrylate) [P(IBnA)] (Mw = 100,000) + isobornyl acrylate(IBnA) in supercritical carbon dioxide (CO2), P(IBnA) (Mw = 100,000) + dimethyl ether (DME) in CO2, P(IBnA) (Mw = 100,000) in propane and butane, and P(IBnA) (Mw = 1,000,000) in propane, propylene, butane and 1-butene at high pressure conditions. Phase behaviors for these systems were measured at a temperature range from 323.4 K to 474.1 K and pressure up to 296.7 MPa. The cloud-point curves of P(IBnA) (Mw = 100,000) + IBnA and DME in CO2 change from upper critical solution temperature (UCST) behavior to lower critical solution temperature (LCST) behavior as IBnA and DME concentration increases, and liquid–liquid–vapor phase behavior appears for the P(IBnA) (Mw = 100,000) + CO2 + 80.3 wt.% IBnA system. Phase behaviors of P(IBnA) and 50 wt.% IBnA in CO2 and P(IBnA) in propane and butane show the pressure difference in accordance with Mw = 1,000,000 and Mw = 100,000 of P(IBnA). Also, the solubility curves for IBnA in supercritical CO2 were measured at a temperature range of (313.2–393.2) K and pressure up to 22.86 MPa. The experimental results were modeled with the Peng–Robinson equation of state (PR-EOS) using a mixing rule including two adjustable parameters. The critical property of IBnA is estimated with the Joback–Lyderson method.  相似文献   

15.
A mathematical model has been developed to describe the process of precipitation of ultrafine particles by pressure reduction over gas (CO2)-expanded liquids. A rapid pressure reduction over a CO2-expanded organic solution, from 30–70 to 1 bar at 303 K decreases the solution temperature by 30–80 K in a very short span of time (0.5–1.5 min), which generates a rapid, high, and uniform supersaturation of the dissolved solute in the solution and facilitates precipitation of ultrafine particles. The model developed in this work estimates the supersaturation attained, nucleation and growth rates obtained during the pressure reduction over CO2-expanded organic solutions, and the particle size distribution of the precipitated particles. Cholesterol has been chosen as a model solute to be precipitated, and acetone has been chosen as a solvent. A new method has been developed for prediction of equilibrium solubility of solute which is affected by a decrease in CO2 mole fraction as well as a simultaneous decrease in solution temperature during pressure reduction. This method combines the semi-empirical approach of using the partial molar volume fraction of solvent in a CO2-solvent binary mixture and solid–liquid equilibrium data for a solute–solvent system. Size distributions of the precipitated particles have been calculated assuming primary nucleation (homogeneous as well as heterogeneous nucleation) and diffusion-limited growth kinetics. The predicted mean average particle sizes are then compared with the size of cholesterol particles precipitated by pressure reduction of a CO2-expanded acetone solution of cholesterol. The particle sizes predicted assuming heterogeneous nucleation are found to be closer to the experimentally observed particle sizes, indicating that the heterogeneous nucleation could be the main mechanism of nucleation, which could occur at the gas–liquid interface of the CO2 bubbling out of CO2-expanded solution during pressure reduction.  相似文献   

16.
Experimental phase equilibrium data for the systems CO2 + n-dodecane, CO2 + 1-decanol and CO2 + 3,7-dimethyl-1-octanol were used to determine values for binary interaction parameters for use in the RK-ASPEN thermodynamic model in Aspen Plus®. Bubble and dew point data of the mixtures CO2 + (n-dodecane + 1-decanol), CO2 + (n-dodecane + 3,7-dimethyl-1-octanol), CO2 + (1-decanol + 3,7-dimethyl-1-octanol) and CO2 + (n-dodecane + 1-decanol + 3,7-dimethyl-1-octanol) were measured experimentally in a static synthetic view cell, and compared to the data predicted by the RK-ASPEN model. The model predicted the phase equilibrium data reasonably well in the low solute concentration region; significant deviation of model predictions from experimental data occurred in the mixture critical and high solute concentration regions due to the exclusion of solute–solute interaction parameters in the model. Distribution coefficients and separation factors were determined for the multi-component mixture and separation of the alkane from the alcohol mixture with a supercritical fluid extraction process was found to be possible.  相似文献   

17.
Liquid drilling fluid is often called drilling mud is heavy, viscous fluid mixtures use to carry rock cuttings to the surface and lubricate and cool the drill bit. During carrying cuttings they contaminated which not only reduce their functionality but also make them a hazardous and dangerous wastes which cannot be discharged anywhere without treatment. Due to this fact, in the present study, supercritical extraction process was used to remove contaminants from the drilling mud. Regarding this, effect of different parameters including extraction temperature (313–338 K) and pressure (100–200 bar), flow rate of CO2 (0.05–0.36 cm3/s) and static time (20–130 min) on the removal of contaminations from drilling mud was examined using the design of experiment of changing one factor at a time. The obtained results revealed that the optimum operational conditions that lead to the highest removal degree of contaminations are temperature and pressure of 333 K and 180 bar, respectively, flow rate of lower than 0.1 cm3/s and the static time of 110 min. In addition, to examine the effect of the supercritical extraction on the crystalline structure modification and removal contaminations X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were performed which confirmed the successful removal of contaminations from the drilling mud without significant crystalline modification.  相似文献   

18.
The experimental solubility of dibenzofuran in near-critical and supercritical carbon dioxide and the solid–liquid–vapor (SLV) equilibrium line for the CO2 + dibenzofuran system are reported. The built in-house static view cell apparatus used in these measurements is described. The solubility of naphthalene in supercritical CO2 and the CO2 + naphthalene SLV line are also determined in order to assess the reliability and accuracy of the measurement technique. The solubility of dibenzofuran in carbon dioxide is determined at 301.3, 309.0, 319.2, 328.7 and 338.2 K in the 6–30 MPa pressure range. Solubility data are correlated using the Chrastil model and the Peng–Robinson equation of state. This equation is also used to predict the CO2 + dibenzofuran SLV line. Results show the feasibility of using supercritical CO2 to extract dibenzofuran.  相似文献   

19.
In this study we investigated the use of near critical liquid CO2 for the extraction of chaste tree ripe fruits (Vitex agnus-castus L.). Two procedures utilizing near critical liquid CO2 were tested: (1) the extraction of plant material via continuous solvent recycling and (2) the extraction by a Soxhlet-type process via periodic solvent recycling. The results were compared with data obtained from the traditional Soxhlet extraction process using three different solvents, namely n-hexane, dichloromethane, and methanol. Extractions with liquid CO2, recycled in continuous mode, of chaste tree fruits in three sizes: (1) <0.3 mm, (2) 0.3–0.8 mm, and (3) 3–3.2 mm resulted in maximum yields of 4.9%, 4.1% and 2.8%, respectively. Extraction times of 0.17–25 h were used. Extraction by continuous recycling of liquid CO2 is more efficient than Soxhlet-type periodic recycling of liquid CO2, resulting in up to three times higher yield for the same solvent-to-feed ratio. Comparison of HPLC data for extracts obtained by liquid CO2, n-hexane, dichloromethane and methanol showed that the diterpene rotundifuran is best extracted by liquid CO2 (3.010 g/kg drug), and the flavonoid casticin is best extracted by n-hexane (1.067 g/kg drug).  相似文献   

20.
A sample of 86 wt% MgH2–10 wt% Ni–2 wt% NaAlH4–2 wt% Ti (named MgH2–10Ni–2NaAlH4–2Ti) was prepared by reactive mechanical grinding. Activation of the sample was not required at 573 K. At the first hydriding–dehydriding cycle (n = 1), the sample absorbed more than 5 wt% H at 573 K under 12 bar H2 for 60 min. The hydriding rate increased as the temperature increased from 423 K to 553 K. MgH2–10Ni–2NaAlH4–2Ti showed quite high hydridng rates at relatively low temperatures of 423 K and 473 K under 12 bar H2, absorbing 4.02 wt% H for 60 min at 473 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号