首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinel (MgAl2O4) crystals doped with 1.0% Mn have been grown by floating zone (FZ) technique with various Mg compositions, x = MgO/Al2O3, from 0.2 to 1.0. Compositional variations of photoluminescence are evaluated for a fluorescence thermometer application using crystals grown. Strong photoluminescence (PL) peak is observed at λ from 512 to 520 nm from the crystals grown from compositions, x, from 0.3 to 1.0. Peak wavelength of PL increases linearly from 512 to 520 nm with x. Weak PL peaking at λ = 750 nm is also observed from the specimens. Compositional variations of PL are considered to be due to the variation of crystal field surrounding the Mn2+ ions. The variation of crystal field strength agrees with the compositional variation of lattice constant.  相似文献   

2.
This work presents a thermal decomposition study of the precursor resin prepared from the citrate precursor along with structural features and optical properties materials composed by Y2O3 and Eu3+ containing Y2O3 in 0.5, 3, 5 and 7 mol%. The microcrystallite sizes were estimated from the Scherrer equation. The structural and optical properties revealed that the addition of 5 mol% of Eu3+ to the Y2O3 matrix gave rise to the highest relative emission intensity which was evidenced by the luminescence intensity. The lifetime of the 0.5 mol% Eu3+-doped sample suggested two different symmetry sites for Eu3+ ions because two different lifetime values were acquired for this sample, while for phosphors doped with 3 or 5 mol% of Eu3+ ions only one similar lifetime was observed. When the concentration of Eu3+ is 0.5 and 3 mol%, the luminescence intensity is weak due to the low probability of the O2? - Eu3+ charge transfer transition. On the other hand, when the concentration of the Eu3+ ions is 7 mol%, a quenching effect is evidenced.  相似文献   

3.
《Optical Materials》2010,32(12):1828-1830
The results of the photoluminescence (PL) investigation of pure and chromium-doped MAlP2O7 (M = Na, K, Cs) compounds are presented. The spectra of the intrinsic luminescence of MAlP2O7 crystals consist of a separated UV band at a peak position near 330 nm and a complex wide band which covers the region of visible light up to 750 nm at excitation by VUV synchrotron radiation. The “red” band in 600–1000 nm diapason appears in the PL spectra of crystals doped with chromium ions. The effect of the temperature on the structure, the peak positions and intensities of the luminescence bands was studied. An assumption about the nature of the intrinsic PL was made. The “red” luminescence was considered as a result of the 4Т2  4А2 radiation transitions in the impurity Cr3+ ions located in the intermediate crystal field.  相似文献   

4.
《Optical Materials》2005,27(3):515-519
CsBr0.9I0.1:Eu2+ crystals were grown by Bridgman technique. Optical absorption spectrum of the unirradiated CsBr0.9I0.1:Eu2+ crystals show absorption bands at 270 nm and 340 nm. Irradiated CsBr0.9I0.1:Eu2+ shows single F band for F(Br) and F(I) centers at 730 nm. Conversion of Eu2+ to Eu3+ after irradiation is confirmed by optical absorption technique. Sharp and single Photoluminescence (PL) emission band is observed at 440 nm for CsBr0.9I0.1:Eu2+ crystals. Photostimulated Luminescence (PSL) emission band observed for CsBr0.9I0.1:Eu2+ crystals at 442 nm due to excitation at 730 nm shows that the F centers are photostimulable. PSL emission intensity increases linearly with irradiation dose up to 2.5 Krad.  相似文献   

5.
K4BaSi3O9:Eu3+ polycrystals were synthesized by solid state method. X-ray powder diffraction measurements confirmed structure of the samples. The excitation and the emission spectra of orthorhombic K4BaSi3O9 doped with Eu3+ were investigated. The excitation spectrum exhibits a broad band with maximum at 220 nm corresponding to the charge transfer (CT) transition between O2 and Eu3+ ions and smaller 4f–4f transitions. The emission of investigated phosphor was excited at 395 nm and has quantum efficiency (QE) equal 27%. The emission maximum at 616.5 nm was assigned to the 5D0  7F2 transition of Eu3+ ions. The luminescence decay profiles as well as the thermal quenching were measured and analyzed. K4BaSi3O9:Eu3+has high temperature quenching of the emission T0.5 = 335 °C.  相似文献   

6.
Ca2MgSi2O7:Eu3+ films were deposited on Al2O3 (0 0 0 1) substrates by pulsed laser deposition. The films were grown at various oxygen pressures ranging from 100 to 400 mTorr. The crystallinity and surface morphology of the films were examined by X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. XRD and AFM respectively showed that the Ca2MgSi2O7:Eu3+ films had a zircon structure and consisted of homogeneous grains ranging from 100 to 400 nm depending on the deposition conditions. The radiation emitted was dominated by a red emission peak at 620 nm. The maximum PL intensity of the Ca2MgSi2O7:Eu3+ films grown at 300 mTorr was increased by a factor of 1.3 compared to that of Ca2MgSi2O7:Eu3+ films grown at 100 mTorr. The crystallinity, surface roughness and photoluminescence of the thin-film phosphors were strongly dependent on the deposition conditions, in particular, the oxygen partial pressure.  相似文献   

7.
8.
《Materials Research Bulletin》2006,41(10):1854-1860
The luminescent properties of Sr3Al2O6 doped and co-doped with the rare earths (Ln3+ = Eu3+, Dy3+, Eu3+ and Dy3+) have been studied. The material was synthesized by reflux method and fired up to 900 °C for 16 h. The X-ray diffraction pattern confirms that the synthesized material consists of Sr3Al2O6 as main phase. The photoluminescence study gives a clear evidence of europium stabilizing in trivalent form and surprisingly with no presence of europium in the divalent state. The addition of Dy3+ as co-dopant in the Sr3Al2O6:Eu3+ matrix shows the quenching effect in the photoluminescence (PL) spectra. The photoluminescence intensity of Eu3+ falls gradually on increasing the concentration of the co-dopant in the range from 0.1 mole% to 2.0 mole%. The significantly intense thermoluminescence (TL) glow peak was obtained for Sr3Al2O6:Eu3+, Dy3+ (1% and 0.1%) at around 194 °C when irradiated with 10 kGy dose from Sr-90 β source.  相似文献   

9.
《Optical Materials》2008,30(12):1723-1730
Sol–gel zirconia films doped with Eu3+ concentrations ranging from 0.2% to 10%, were prepared by dip-coating a solution of the starting precursor, zirconium n-propoxide, ethanol, methanol, water, acetic acid and europium nitrate on glass and SiO2/Si wafer substrates. The ZrO2 sol thus synthesized remains stable for several months. Structural characterization of the zirconia films was performed using Waveguide Raman Spectroscopy. These films present an amorphous phase up to an annealing temperature of 400 °C. Above 400 °C the matrix evolves towards a metastable tetragonal phase. This transformation was found to depend on the concentration of Eu3+ ions. Indeed, while for samples doped with 0.2% Eu3+ this transformation occurs around 450 °C, in the case of 10% of Eu3+ ions, the transition is pushed off to 500 °C. The optical losses of these waveguides were found to be about 0.3 dB cm−1 for samples annealed at 400 °C. The surfaces of the films were characterized using Atomic Force Microscopy and the roughness was measured. The Eu-doped films were investigated using Waveguide Photoluminescence Spectroscopy. The dynamical behaviour of the Eu3+ emissions indicated that concentration quenching effect is not observed even when the matrix is doped up to 10%.  相似文献   

10.
Uniform Al2O3:Cr3+ microfibers were synthesized by using a hydrothermal route and thermal decomposition of a precursor of Cr3+ doped ammonium aluminum hydroxide carbonate (denoted as AAHC), and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence (PL) spectra and decay curves. XRD indicated that Cr3+ doped samples calcined at 1473 K were the most of α-Al2O3 phase. SEM showed that the length and diameter of these Cr3+ doped alumina microfibers were about 3–9 μm and 300 nm, respectively. PL spectra showed that the Al2O3:Cr3+ microfibers presented a broad R band at 696 nm. It is shown that the 0.07 mol% of doping concentration of Cr3+ ions in α-Al2O3:Cr3+ was optimum. According to Dexter's theory, the critical distance between Cr3+ ions for energy transfer was determined to be 38 Å. It is found that the curve followed the single-exponential decay.  相似文献   

11.
The CaAlSiN3:Eu2+ red phosphor-in-glass was prepared using bismuth borate glass as the binder for high power light excitation. B2O3–Bi2O3–Al2O3–ZnO glass powder showed good sintering behavior with CaAlSiN3:Eu2+ phosphors at around 550 °C. The phosphor-in-glass has flat surface with a thickness of about 100 μm. From the images of FE-SEM and confocal laser scanning microscope, the uniform distribution of phosphor particles inside the phosphor-in-glass was vividly and clearly observed. And the luminescent property of phosphors was not greatly affected by glasses, as shown in fluorescence spectra. When the volume radio of CaAlSiN3:Eu2+ phosphors was 50%, the sample exhibited low thermal quenching and high flexural strength of 28.5 MPa. Compared YAG:Ce3+ phosphor-in-glass with CaAlSiN3:Eu2+ phosphor-in-glass, we found bismuth borate glass had better wettability on YAG:Ce3+ particles, which caused a higher flexural strength of the YAG:Ce3+ phosphor-in-glass.  相似文献   

12.
Eu3+ ions incorporated Li–K–Zn fluorotellurite glasses, (70  x)TeO2 + 10Li2O + 10K2O + 10ZnF2 + xEu2O3, (0  x  2 mol%) were prepared via melt quenching technique. Optical absorption from 7F0 and 7F1 levels of the Eu3+-doped glass has been studied to examine the covalent bonding characteristics, energy band gap and Judd–Ofelt intensity parameters. The emission spectra (5D0  7F0,1,2,3,4) of the glasses were used to estimate the luminescence enhancement, asymmetric environment in the vicinity of Eu3+ ions, stimulated emission cross section and branching ratios. The phonon side band mechanism of 5D2 level of the Eu3+ ions in the prepared glass was examined by considering the excitation and Raman spectra. The radiative lifetime calculated using Judd–Ofelt parameters was compared with the experimental lifetime to estimate the quantum efficiency of 5D0 level of Eu3+ ions in Li–K–Zn fluorotellurite glass.  相似文献   

13.
《Optical Materials》2005,27(3):389-394
Potassium hydrogen crystals have good electro-optic properties that are in order of urea crystal. Trivalent ions doped KAP crystals KAP:M+3 (M = Fe3+, Cr3+) ions were grown using solution growth technique. Optical and electro-optical characterisations on the coefficient r51 were carried out. The refractive matching offered by the KAP:M+3 crystals was investigated. One of the factors causing the observed enhancement in the electro-optics properties is the ligand interactions due the presence of trivalent ions in KAP lattice.  相似文献   

14.
The potential nonlinear optical material of Terbium (Tb3+) ion doped l-Histidine hydrochloride monohydrate (LHHC) single crystals were successfully grown. Tb3+:LHHC crystals of 7 mm × 5 mm × 3 mm and 59 mm length and 15 mm diameter have been grown by the slow solvent evaporation and Sankaranarayanan-Ramasamy (SR) techniques respectively. The grown crystals were characterized by single crystal X-ray diffraction analysis to confirm the crystalline structure and morphology. High resolution X-ray diffraction (HRXRD) studies revealed that the SR grown sample shows relatively good crystalline nature with 9″ full-width at half-maximum (FWHM) for the diffraction curve. Functional groups were identified by Fourier transform infra-red spectroscopy (FTIR). The optical transparency and band gaps of grown crystals were measured by UV–Vis spectroscopy. Thermogravimetric and differential thermal analysis (TG/DTA) studies reveal that the crystal was thermally stable up to 155 °C in SR grown crystal. Surface morphology of the growth plane was observed using scanning electron microscopy (SEM). The incorporation of Tb ion was estimated by EDAX. The frequency-dependent dielectric properties of the crystals were carried out for different temperatures. Vickers hardness study carried out on (1 0 0) face at room temperature shows increased hardness of the SR method grown crystal. Second harmonic generation efficiency of SEST and SR grown crystals are 3.2 and 3.5 times greater than that of pure KDP. The Photoluminescence (PL) studies of Tb3+ ions result from the radiative intra-configurational f-f transitions that occur from the 5D4 excited state to the 7Fj (j = 6, 5, 4, 3) ground states. The decay curve of the 5D4 level of emission was observed with a long life time of 319.2041 μs for the SR grown Tb3+:LHHC crystal.  相似文献   

15.
Eu2+-activated Ca2Y2Si2O9 phosphors with different Eu2+ concentrations have been prepared by a solid-state reaction method at high temperature and their photoluminescence (PL) properties were investigated. Photoluminescence results show that Eu2+-doped Ca2Y2Si2O9 can be efficiently excited by UV–visible light from 300 to 425 nm. Ca2Y2Si2O9: Eu2+ exhibits broad band emission in the wavelength range of 425–700 nm, due to the 4f65d1  4f75d0 transition of the Eu2+ ions located at two different sites ((Ca/Y)1 and (Ca/Y)2) in Ca2Y2Si2O9. The effect of the Eu2+ concentration in Ca2Y2Si2O9 on the PL properties was investigated in detail. The results showed that the relative PL intensity reaches a maximum at 1 mol% of Eu2+, and a red-shift of the emission bands from these two different sites was observed with increasing Eu2+ concentration. Also there exists energy transfer between these two Eu2+ sites. The potential applications of Ca2Y2Si2O9: Eu2+ have been pointed out.  相似文献   

16.
This paper reports the influence of doping degree and annealing temperature on XRD, Raman, EPR and PL spectra of Sn1xVxO2 nanoparticles with x = 0, 0.01 and 0.05 annealed at 600 and 800 °C. XRD studies reveal a tetragonal rutile crystalline phases of tin oxide, while the formation of V2O5 secondary phase was evidenced for all doped nanoparticles only by Raman scattering. In function of the doping degree and annealing temperature, from EPR spectroscopy was evidenced the presence of three different positions for V4+ ions in the samples: isolated ions disposed on the nanoparticles surface, ions which are coupled by dipolar or exchange interactions and cluster ions. The luminescence emissions associated with oxygen vacancies and structural defects are influenced by doping degree and annealing temperature and could be correlated with the crystallite size determined from XRD patterns.  相似文献   

17.
For the first time, novel Ba3−xWO6:xEu3+ (x = 0.01, 0.03, 0.05, 0.08, 0.1) nanowire phosphors were synthesized by the conventional solid state method. The X-ray pattern indicates that Ba3WO6 belongs to the cubic system with space group Fm-3m. The photoluminescence (PL) spectra demonstrate that the phosphors emit strong red light centered at 595 nm corresponding to 5D0  7F1 transition of Eu3+ ion under CT band excitation. The position of charge transfer (CT) band of Ba2.95WO6:0.05Eu3+ shifts to a lower energy region (red shift) with the increase of annealing temperature. The co-doped effect of alkali-metal ions (Li+, Na+, and K+) on the luminescence behavior of Ba3WO6:Eu3+ has been discussed in this paper. The luminescence properties suggest that the Ba3WO6:Eu3+ phosphor may be a promising candidate in solid-state lighting applications.  相似文献   

18.
Spherical YVO4:Eu3+ microstructures were hydrothermally synthesized by the reaction of NH4VO3, Y2O3, and Eu2O3 at 180 °C for 24 h with the assistance of polyvinylpyrrolidone (PVP) as a surfactant. The resulting products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. The experimental results showed that ball-like YVO4:Eu3+ microspheres with a diameter of about 4–5 μm, corresponding to the SEM observations, formed at 180 °C for 24 h using 0.2 g PVP with the molecular weight of 20,000 g mol?1. The amount of PVP and the reaction time of hydrothermal processing were found to play a key role in the formation of YVO4:Eu3+ microspheres. It has been observed that the relative luminescence intensities of the as-synthesized samples increased with increasing hydrothermal reaction times due mainly to the increase of crystallinity.  相似文献   

19.
A red emitting ZnO·Y2O3:Eu phosphor has been prepared using pyrolysis technique at temperatures ≤1000 °C. When NH4Cl was used as an ingredient, its luminescence efficiency was quite high indicating that Cl? ions act as charge compensators since the introduction of Y3+ and Eu3+ cations in ZnO lattice demands the introduction of equal amount of excess anions. However, Na+ or Li+ quenches the luminescence efficiency of ZnO·Y2O3:Eu. Due to ZnO host absorption, the excitation peaks of ZnO·Y2O3:Eu phosphor near 260 nm and 394 nm are suppressed while the one at 468 nm is intense. This red emitting phosphor may find applications when monochromatic excitation such as lasers are involved. XRD data of (Zn0.93Y0.07)Oz:Eu3+,Cl? shows the presence of the ZnO phase as well as the Y2O3 phase. It shows that Y2O3 forms a sublattice within ZnO host. This is supported by the PL data of (Zn0.93Y0.07)Oz:Eu3+,Cl? which showed no significant change in the PL efficiency with increase in ZnO molar concentration.  相似文献   

20.
In this work, potassium strontium bromide activated with divalent europium, (KSr2Br5:Eu) has been studied. It has a monoclinic crystal structure and a density of 3.98 g/cm3. Two single crystals of KSr2Br5 doped with 5% Eu2+, with diameters of 13 mm and 22 mm, were grown in a two zone transparent furnace via the Bridgman technique. The X-ray excited emission spectrum consisted of a single peak at ∼427 nm due to the 5d–4f transition in Eu2+. The measured light yield and energy resolution at 662 keV was 75,000 ph/MeV and 3.5%. At low energies KSr2Br5:Eu 5% also displays good energy resolution, 6.7% at 122 keV and 7.9% at 59.5 keV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号