首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Keratoconus (KC) is a progressive corneal thinning disease that manifests in puberty and worsens during pregnancy. KC onset and progression are attributed to diverse factors that include: environmental, genetics, and hormonal imbalances; however, the pathobiology remains elusive. This study aims to determine the role of corneal stroma sex hormone receptors in KC and their interplay with estrone (E1) and estriol (E3) using our established 3D in vitro model. Healthy cornea stromal cells (HCFs) and KC cornea stromal cells (HKCs), both male and female, were stimulated with various concentrations of E1 and E3. Significant changes were observed between cell types, as well as between males and females in the sex hormone receptors tested; androgen receptor (AR), progesterone receptor (PR), estrogen receptor alpha (ERα), and estrogen receptor beta (ERβ) using Western blot analysis. E1 and E3 stimulations in HCF females showed AR, PR, and ERβ were significantly upregulated compared to HCF males. In contrast, ERα and ERβ had significantly higher expression in HKC’s females than HKC’s males. Our data suggest that the human cornea is a sex-dependent, hormone-responsive tissue that is significantly influenced by E1 and E3. Therefore, it is plausible that E1, E3, and sex hormone receptors are involved in the KC pathobiology, warranting further investigation.  相似文献   

4.
5.
6.
Inflammation is important for the initiation and progression of breast cancer. We have previously reported that in monocytes, estrogen regulates TLR4/NFκB-mediated inflammation via the interaction of the Erα isoform ERα36 with GPER1. We therefore investigated whether a similar mechanism is present in breast cancer epithelial cells, and the effect of ERα36 expression on the classic 66 kD ERα isoform (ERα66) functions. We report that estrogen inhibits LPS-induced NFκB activity and the expression of downstream molecules TNFα and IL-6. In the absence of ERα66, ERα36 and GPER1 are both indispensable for this effect. In the presence of ERα66, ERα36 or GPER1 knock-down partially inhibits NFκB-mediated inflammation. In both cases, ERα36 overexpression enhances the inhibitory effect of estrogen on inflammation. We also verify that ERα36 and GPER1 physically interact, especially after LPS treatment, and that GPER1 interacts directly with NFκB. When both ERα66 and ERα36 are expressed, the latter acts as an inhibitor of ERα66 via its binding to estrogen response elements. We also report that the activation of ERα36 leads to the inhibition of breast cancer cell proliferation. Our data support that ERα36 is an inhibitory estrogen receptor that, in collaboration with GPER1, inhibits NFκB-mediated inflammation and ERα66 actions in breast cancer cells.  相似文献   

7.
Osteosarcoma is a highly malignant musculoskeletal tumor that is commonly noticed in adolescent children, young children, and elderly adults. Due to advances in surgery, chemotherapy and imaging technology, survival rates have improved to 70–80%, but chemical treatments do not enhance patient survival; in addition, the survival rate after chemical treatments is still low. The most obvious clinical feature of osteosarcoma is new bone formation, which is called “sun burst”. Estrogen receptor alpha (ERα) is an essential feature of osteogenesis and regulates cell growth in various tumors, including osteosarcoma. In this study, we sought to investigate the role of ERα in osteosarcoma and to determine if ERα can be used as a target to facilitate the chemosensitivity of osteosarcoma to current treatments. The growth rate of each cell clone was assayed by MTT and trypan blue cell counting, and cell cycle analysis was conducted by flow cytometry. Osteogenic differentiation was induced by osteogenic induction medium and quantified by ARS staining. The effects of ERα on the chemoresponse of OS cells treated with doxorubicin were evaluated by colony formation assay. Mechanistic studies were conducted by examining the levels of proteins by Western blot. The role of ERα on OS prognosis was investigated by an immunohistochemical analysis of OS tissue array. The results showed an impaired growth rate and a decreased osteogenesis ability in the ERα-silenced P53(+) OS cell line U2OS, but not in P53(−) SAOS2 cells, compared with the parental cell line. Cotreatment with tamoxifen, an estrogen receptor inhibitor, increased the sensitivity to doxorubicin, which decreased the colony formation of P53(+) U2OS cells. Cell cycle arrest in the S phase was observed in P53(+) U2OS cells cotreated with low doses of doxorubicin and tamoxifen, while increased levels of apoptosis factors indicated cell death. Moreover, patients with ER−/P53(+) U2OS showed better chemoresponse rates (necrosis rate > 90%) and impaired tumor sizes, which were compatible with the findings of basic research. Taken together, ERα may be a potential target of the current treatments for osteosarcoma that can control tumor growth and improve chemosensitivity. In addition, the expression of ERα in osteosarcoma can be a prognostic factor to predict the response to chemotherapy.  相似文献   

8.
Clinical outcomes of melanoma patients pointed out a gender disparity that supports a correlation between sex hormone activity on estrogen receptors (ER) and melanoma development and progression. Here, we found that the epithelial-to-mesenchymal transition (EMT) of melanoma cells induced by extracellular acidosis, which is a crucial hallmark of solid cancers, correlates with the expression of ERβ, the most representative ER on melanoma cells. Extracellular acidosis induces an enhanced expression of ERβ in female cells and EMT markers remain unchanged, while extracellular acidosis did not induce the expression of ERβ in male cells and EMT was strongly promoted. An inverse relationship between ERβ expression and EMT markers in melanoma cells of different sex exposed to extracellular acidosis was revealed by two different technical approaches: florescence-activated cell sorting of high ERβ expressing cell subpopulations and ERβ receptor silencing. Finally, we found that ERβ regulates EMT through NF-κB activation. These results demonstrate that extracellular acidosis drives a differential ERβ regulation in male and female melanoma cells and that this gender disparity might open new perspectives for personalized therapeutic approaches.  相似文献   

9.
10.
Ovarian cancer (OCa) is the deadliest gynecologic cancer. Emerging studies suggest ovarian cancer stem cells (OCSCs) contribute to chemotherapy resistance and tumor relapse. Recent studies demonstrated estrogen receptor beta (ERβ) exerts tumor suppressor functions in OCa. However, the status of ERβ expression in OCSCs and the therapeutic utility of the ERβ agonist LY500307 for targeting OCSCs remain unknown. OCSCs were enriched from ES2, OV90, SKOV3, OVSAHO, and A2780 cells using ALDEFLUOR kit. RT-qPCR results showed ERβ, particularly ERβ isoform 1, is highly expressed in OCSCs and that ERβ agonist LY500307 significantly reduced the viability of OCSCs. Treatment of OCSCs with LY500307 significantly reduced sphere formation, self-renewal, and invasion, while also promoting apoptosis and G2/M cell cycle arrest. Mechanistic studies using RNA-seq analysis demonstrated that LY500307 treatment resulted in modulation of pathways related to cell cycle and apoptosis. Western blot and RT-qPCR assays demonstrated the upregulation of apoptosis and cell cycle arrest genes such as FDXR, p21/CDKN1A, cleaved PARP, and caspase 3, and the downregulation of stemness markers SOX2, Oct4, and Nanog. Importantly, treatment of LY500307 significantly attenuated the tumor-initiating capacity of OCSCs in orthotopic OCa murine xenograft models. Our results demonstrate that ERβ agonist LY500307 is highly efficacious in reducing the stemness and promoting apoptosis of OCSCs and shows significant promise as a novel therapeutic agent in treating OCa.  相似文献   

11.
Epithelial splicing regulatory proteins 1 and 2 (ESRP1/2) control the splicing pattern during epithelial to mesenchymal transition (EMT) in a physiological context and in cancer, including breast cancer (BC). Here, we report that ESRP1, but not ESRP2, is overexpressed in luminal BCs of patients with poor prognosis and correlates with estrogen receptor α (ERα) levels. Analysis of ERα genome-binding profiles in cell lines and primary breast tumors showed its binding in the proximity of ESRP1 and ESRP2 genes, whose expression is strongly decreased by ERα silencing in hormone-deprived conditions. The combined knock-down of ESRP1/2 in MCF-7 cells followed by RNA-Seq, revealed the dysregulation of 754 genes, with a widespread alteration of alternative splicing events (ASEs) of genes involved in cell signaling, metabolism, cell growth, and EMT. Functional network analysis of ASEs correlated with ESRP1/2 expression in ERα+ BCs showed RAC1 as the hub node in the protein–protein interactions altered by ESRP1/2 silencing. The comparison of ERα- and ESRP-modulated ASEs revealed 63 commonly regulated events, including 27 detected in primary BCs and endocrine-resistant cell lines. Our data support a functional implication of the ERα-ESRP1/2 axis in the onset and progression of BC by controlling the splicing patterns of related genes.  相似文献   

12.
13.
14.
Thoracic pair of mammary glands from steroid hormone-pretreated mice respond to hormones structurally and functionally in organ culture. A short exposure of glands for 24 h to 7,12 Dimethylbenz(a)anthracene (DMBA) during a 24-day culture period induced alveolar or ductal lesions. Methods: To differentiate the functional significance of ERα and ERβ, we employed estrogen receptor (ER) knockout mice. We compared the effects of DMBA on the development of preneoplastic lesions in the glands in the absence of ERα (αERKO) and ERβ (βERKO) using an MMOC protocol. Glands were also subjected to microarray analyses. We showed that estradiol can be replaced by EGF for pretreatment of mice. The carcinogen-induced lesions developed under both steroids and EGF pretreatment protocols. The glands from αERKO did not develop any lesions, whereas in βERKO mice in which ERα is intact, mammary alveolar lesions developed. Comparison of microarrays of control, αERKO and βERKO mice showed that ERα was largely responsible for proliferation and the MAP kinase pathways, whereas ERβ regulated steroid metabolism-related genes. The results indicate that ERα is essential for the development of precancerous lesions. Both subtypes, ERα and Erβ, differentially regulated gene expression in mammary glands in organ cultures.  相似文献   

15.
While estrogen receptor alpha (ERα) is known to be important for bone development and homeostasis, its exact function during osteoblast differentiation remains unclear. Conditional deletion of ERα during specific stages of osteoblast differentiation revealed different bone phenotypes, which were also shown to be sex-dependent. Since hypertrophic chondrocytes can transdifferentiate into osteoblasts and substantially contribute to long-bone development, we aimed to investigate the effects of ERα deletion in both osteoblast and chondrocytes on bone development and structure. Therefore, we generated mice in which the ERα gene was inactivated via a Runx2-driven cyclic recombinase (ERαfl/fl; Runx2Cre). We analyzed the bones of 3-month-old ERαfl/fl; Runx2Cre mice by biomechanical testing, micro-computed tomography, and cellular parameters by histology. Male ERαfl/fl; Runx2Cre mice displayed a significantly increased cortical bone mass and flexural rigidity of the femurs compared to age-matched controls with no active Cre-transgene (ERαfl/fl). By contrast, female ERαfl/fl; Runx2Cre mice exhibited significant trabecular bone loss, whereas in cortical bone periosteal and endosteal diameters were reduced. Our results indicate that the ERα in osteoblast progenitors and hypertrophic chondrocytes differentially contributes to bone mass regulation in male and female mice and improves our understanding of ERα signaling in bone cells in vivo.  相似文献   

16.
Glucocorticoids (GCs) act via the GC receptor (GR), a receptor ubiquitously expressed in the body where it drives a broad spectrum of responses within distinct cell types and tissues, which vary in strength and specificity. The variability of GR-mediated cell responses is further extended by the existence of GR isoforms, such as GRα and GRβ, generated through alternative splicing mechanisms. While GRα is the classic receptor responsible for GC actions, GRβ has been implicated in the impairment of GRα-mediated activities. Interestingly, in contrast to the popular belief that GRβ actions are restricted to its dominant-negative effects on GRα-mediated responses, GRβ has been shown to have intrinsic activities and “directly” regulates a plethora of genes related to inflammatory process, cell communication, migration, and malignancy, each in a GRα-independent manner. Furthermore, GRβ has been associated with increased cell migration, growth, and reduced sensitivity to GC-induced apoptosis. We will summarize the current knowledge of GRβ-mediated responses, with a focus on the GRα-independent/intrinsic effects of GRβ and the associated non-canonical signaling pathways. Where appropriate, potential links to airway inflammatory diseases will be highlighted.  相似文献   

17.
18.
Ovarian granulosa cells (GC) play an essential role in the development and atresia of follicles. Emerging studies suggest that non-coding RNAs are involved in the regulation of GC apoptosis. Here, we aimed to analyze the function of ssc-circINHA-001, coded by the first exon of the inhibin subunit α gene (INHA), in resisting GC apoptosis and follicular atresia by enhancing the expression of the inhibin subunit β A (INHBA) through a cluster of miRNAs. A higher expression of ssc-circINHA-001 in healthy follicles compared to early atretic follicles was detected by qRT-PCR. Its circular structure was confirmed by RNase R treatment and reversed PCR. The function of ssc-circINHA-001 in GC resistance to apoptosis was detected by in vitro transfection of its si-RNA. Furthermore, the dual-luciferase reporter assay suggested that ssc-circINHA-001 adsorbed three miRNAs, termed miR-214-5p, miR-7144-3p, and miR-9830-5p, which share the common target INHBA. A low expression of ssc-circINHA-001 increased the levels of the free miRNAs, inhibited INHBA expression, and thus raised GCs apoptosis through a shift from the secretion of activin to that of inhibin. Our study demonstrated the existence of a circRNA–microRNAs–INHBA regulatory axis in follicular GC apoptosis and provides insight into the relationship between circRNA function and its coding gene in inhibin/activin balance and ovarian physiological functions.  相似文献   

19.
Synthetic ligands of peroxisome-proliferator-activated receptor beta/delta (PPARβ/δ) are being used as performance-enhancing drugs by athletes. Since we previously showed that PPARβ/δ activation affects T cell biology, we wanted to investigate whether a specific blood T cell signature could be employed as a method to detect the use of PPARβ/δ agonists. We analyzed in primary human T cells the in vitro effect of PPARβ/δ activation on fatty acid oxidation (FAO) and on their differentiation into regulatory T cells (Tregs). Furthermore, we conducted studies in mice assigned to groups according to an 8-week exercise training program and/or a 6-week treatment with 3 mg/kg/day of GW0742, a PPARβ/δ agonist, in order to (1) determine the immune impact of the treatment on secondary lymphoid organs and to (2) validate a blood signature. Our results show that PPARβ/δ activation increases FAO potential in human and mouse T cells and mouse secondary lymphoid organs. This was accompanied by increased Treg polarization of human primary T cells. Moreover, Treg prevalence in mouse lymph nodes was increased when PPARβ/δ activation was combined with exercise training. Lastly, PPARβ/δ activation increased FAO potential in mouse blood T cells. Unfortunately, this signature was masked by training in mice. In conclusion, beyond the fact that it is unlikely that this signature could be used as a doping-control strategy, our results suggest that the use of PPARβ/δ agonists could have potential detrimental immune effects that may not be detectable in blood samples.  相似文献   

20.
The composition of IL-23R complex is similar to that of the IL-12 receptor (IL-12R) complex with a shared IL-12R-β1 chain. The IL-12R-β1 heterodimerizes with IL-23R and IL-12R-β2 to form IL-23R and IL-12R complexes, respectively. The IL-12R-β2 has been shown to function as a tumor suppressor gene and apoptotic inducer. However, whether IL-23R also functions in cell apoptosis is currently unknown. In this study, we demonstrate for the first time that overexpression of IL-23R markedly induces cell apoptosis in both 293ET and HeLa cells. The activations of caspase 3 and caspase 9 are induced by IL-23R. Mechanistic study reveals that IL-23R markedly inhibits RAS/MAPK and STAT3 but not STAT1 and PI-3K/Akt signaling pathways in both 293ET and HeLa cells. Overexpression of IL-23R significantly up-regulates IL-12Rβ1 expression but not IL-23α and IL-12β expressions in both cell lines. Therefore, our data strongly indicates that IL-23R is able to induce cell apoptosis by activating the intrinsic mitochondrial pathways associated with the inhibition in RAS/MAPK and STAT3 activations in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号