首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
天然气净化用旋风分离器气液分离性能   总被引:4,自引:3,他引:1  
吴小林  熊至宜  姬忠礼 《化工学报》2010,61(9):2430-2436
为了系统评价天然气净化用旋风分离器在含液量低时的气液分离性能,利用滤膜采样称重法和Welas在线测量法测量了旋风分离器在入口气速8~24 m·s-1、入口液体浓度0.1~2 g·m-3时的分离效率和粒径分布;对比了相同入口浓度下旋风分离器气液分离性能和气固分离性能的异同。实验结果表明,在入口气速为8~24 m·s-1、入口液体浓度为0.1~2 g·m-3时,旋风分离器的气液分离效率随着入口气速和入口液体浓度的增加而增大,而出口粒径分布范围变化很小;与气固分离相比,在相同的入口气速和入口浓度下,旋风分离器的气液分离效率要高2%~6%;另外,气液分离时出口液滴粒径不大于4 μm,而气固分离时出口有大于10 μm固体颗粒存在。  相似文献   

2.
天然气净化用多管旋风分离器的分离性能   总被引:3,自引:0,他引:3  
为了系统评价天然气净化用多管旋风分离器的分离性能,在线测量了入口气速6~24 m/s、入口颗粒浓度30~2000 mg/m3范围内多管旋风分离器的分离效率和分级效率. 结果表明,多管旋风分离器的分离效率和分级效率都随入口气速和入口颗粒浓度增大而提高. 与单管旋风分离器相比,在相同实验条件下,多管旋风分离器的分离效率下降2%~15%;单管旋风分离器基本能除净粒径大于10 mm的颗粒,而多管旋风分离器只能去除15 mm以上的颗粒. 多管旋风分离器的压降主要是内部单管旋风分离器的压降,占整个压降的80%~90%.  相似文献   

3.
为了系统评价EII型旋风分离器的分离性能,探究了入口气速为6~20.5m/s,入口颗粒质量浓度为8.6~17.5g/m~3时,多管旋风分离器的分离效率和压降。结果表明:多管旋风分离器的分离效率随入口气速和入口颗粒质量浓度的增大而出现先升高后下降的趋势,多管旋风分离器的压降随入口气速的增大而增大。在相同实验条件下,与单个旋风子相比,多管旋风分离器的压降升高幅度为20%~25%,分离效率下降不大于2%,具有很好的细粉尘捕集能力。  相似文献   

4.
气流床气化炉内颗粒停留时间分布   总被引:8,自引:3,他引:5  
颗粒停留时间分布是气流床气化炉开发与设计的重要参数,实验设计一种新型脉冲示踪法测量了气流床气化炉内颗粒停留时间分布。初步研究了多喷嘴气化炉和Texaco气化炉内颗粒停留时间分布,分析了气速和颗粒粒径对两种气化炉内颗粒停留时间分布的影响。结果表明:该实验方法具有良好的重复性和可靠性,可以用于气流床气化炉内颗粒停留时间的测量;与Texaco气化炉相比,颗粒在多喷嘴气化炉内的停留时间分布更为合理; 随气速的增大和颗粒粒径的减小,两种气流床气化炉内的颗粒停留时间和方差都增大。  相似文献   

5.
《大氮肥》2020,(3)
通过数值模拟对旋风分离器内的气固两相流动进行研究。采用RSM湍流模型和DPM两相流模型分析旋风分离器内的气固两相流动特性。旋风分离器内的气流切向速度呈中心准强制涡、外侧准自由涡的双涡分布,分界面大约在0.8倍排气管半径处;气流轴向速度呈中心上行、外侧下行的双行流分布,分界面即零速包络面大约与排气管直径一致;小粒径颗粒的运动具有随机性,粒径大于7μm的颗粒可以完全被捕集分离;流动的非轴对称特性和顶灰环对气固分离不利,应给予重视。  相似文献   

6.
内置水平管振动流化床停留时间分布模型   总被引:1,自引:0,他引:1  
采用理论分析和实验研究相结合的方法研究了内置水平管的振动流化床停留时间分布密度。在带内置水平管的二维振动流化床内,以米粒为实验物料进行停留时间分布的实验研究,考察了振动强度、气速、进料流率对流化床内停留时间分布的影响。实验表明,降低振动强度、入口气速和提高进料流率可使停留时间分布相对集中。对实验用流化床内颗粒流动样式的分析,建立了停留时间分布密度函数模型,并将模型预测与实验结果进行了对比,误差在20%以内。  相似文献   

7.
为了考察不同并联旋风分离器的分离性能,运用计算流体力学(CFD)软件对由不同数量、直径为30mm的微旋风元件构成的并联分离器性能特征进行了数值研究。结果表明,当微旋风元件入口气速一致时,增加微旋风元件数量,虽然各并联分离器对5μm以下、中位粒径3.5μm颗粒的总分离效率基本相同,但对3μm以下颗粒的分级效率有所下降;组合分离器灰斗中排尘管间间距减小,微旋风元件内切向速度分布几乎不变,中心轴向速度下降,排尘管尾端气流更加紊乱;随着微旋风元件数量增加,各组合分离器微旋风元件排尘管段旋流稳定性系数S_v沿轴向逐渐增大,微旋风元件内旋流稳定性变差。  相似文献   

8.
姚东  刘明言  李翔南 《化工学报》2018,69(11):4754-4762
采用脉冲示踪技术,研究了3 mm床径的小型气-液-固流化床内液相停留时间分布。以KCl为示踪剂,液相为去离子水,气相为空气,固相为平均粒径0.123~0.222 mm的玻璃微珠和氧化铝颗粒,测量流化床出口液相的电导率,得到其停留时间分布曲线。结果表明,增大表观液速和表观气速,分布曲线变窄,平均停留时间缩短,Peclet数增大;固相的存在使液相的平均停留时间增长。表观液速1.96~15.70 mm×s-1,表观气速1.18~1.96 mm×s-1的条件下,流动接近层流;平均停留时间的范围为(19.6±0.34)s~(48.0±0.92)s,建立的Pe经验关联式对实验结果有较好的预测,偏差在±25%以内。研究结果对于小型三相流化床的设计放大具有指导意义。  相似文献   

9.
采用脉冲示踪技术,研究了3 mm床径的小型气-液-固流化床内液相停留时间分布。以KCl为示踪剂,液相为去离子水,气相为空气,固相为平均粒径0.123~0.222 mm的玻璃微珠和氧化铝颗粒,测量流化床出口液相的电导率,得到其停留时间分布曲线。结果表明,增大表观液速和表观气速,分布曲线变窄,平均停留时间缩短,Peclet数增大;固相的存在使液相的平均停留时间增长。表观液速1.96~15.70 mm?s~(-1),表观气速1.18~1.96 mm?s~(-1)的条件下,流动接近层流;平均停留时间的范围为(19.6±0.34)s~(48.0±0.92)s,建立的Pe经验关联式对实验结果有较好的预测,偏差在±25%以内。研究结果对于小型三相流化床的设计放大具有指导意义。  相似文献   

10.
以氢气作为示踪剂,运用脉冲法测定自热转化炉内停留时间的分布。实验结果表明:随着催化剂床层的增高,停留时间分布密度函数变窄,平均停留时间和量纲一方差均减小;当进口气量增大时,平均停留时间减小,量纲一方差增大。应用N个全混流反应器(CSTR)、轴向混合模型和平推流模型串联建立自热转化炉停留时间分布模型,由Laplace变换法和阻尼最小二乘法对模型参数进行估算,模型估计停留时间曲线与实验测量曲线吻合良好。  相似文献   

11.
针对传统旋风分离器对粒径小于5μm的颗粒分离效率低的问题,提出通过在环流式旋风装置中构建过饱和环境,利用异质凝结原理促进细微颗粒长大的方法。基于Fletcher的经典成核理论,建立气液固数值模型,分析环流旋风分离器中气体和颗粒的流动特性以及冷凝生长和聚并过程。结果表明:经过异质凝结生长和聚并后,颗粒在旋风内的平均粒径从1μm增大到3.92μm,分离效率从51.26%提高到88.26%。在此基础上,分析内筒直径、进气管倾斜角度,以及进口气速对环流式旋风装置压降和分离效率的影响,并通过多目标优化算法得到帕累托最优设计点,优化后的分离效率可达97.5%以上,同时压降也减小至1 165 Pa以下。  相似文献   

12.
以停留时间分布(RTD)为评价指标,对硫磷混酸浸出白钨矿的连续浸出槽内固相颗粒流动行为进行实验研究。同时探究了进料流量、搅拌转速、连续浸出槽中物料进出口位置组合对固相颗粒流动行为的影响。实验结果表明:随着进口流量的增大,一开始槽内的返混程度得到了增强,量纲为1化方差变大,但是继续增大进口流量,进口处物料的横向迁移速度加强,使槽内流体流动趋向平推流,导致量纲为1化方差减小;量纲为1化方差随着搅拌转速的增大而增大,但是此时在槽下部区域会逐渐形成循环死区,槽内死区体积分数随之增大;平均停留时间随着物料进出口位置的变化而发生变化,下进下出的进出料位置组合其平均停留时间最大,且最接近理论平均停留时间。最后利用非理想流动模型来表征实验过程中的停留时间分布,模型拟合的停留时间曲线与实验测量的曲线吻合程度良好。  相似文献   

13.
撞击流气化炉内颗粒停留时间分布的随机模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
根据多喷嘴对置式气化炉流场测试,将气化炉划分为若干区域,运用时间离散、状态离散的马尔可夫链随机模型,模拟了气化炉内颗粒相的停留时间分布(RTD)。当颗粒在撞击区和射流区间的回流比为0.5,向下撞击流股区和管流区为平推流模型,其他区域按全混流模型处理时,模拟值与实验值吻合较好。随着进料流量的增大,平均停留时间减小,量纲1方差减小;随着回流比的增加,平均停留时间增大;气固两相平均停留时间接近,但RTD存在一定差异。  相似文献   

14.
旋流设备内伴有传热、传质或反应过程时,介质停留时间是其关键参数。在冷模实验装置上,采用持液量法,对气液旋流器内液相平均停留时间进行了研究。结果表明,液相停留时间随入口含液率增大明显降低,随入口气速增大降低较小。气液界面剪切力远小于液相重力是入口气速对液相停留时间影响较小的主要原因。基于液膜受力平衡,建立了气液旋流器内液相平均停留时间模型。模型预测停留时间与实测值总体吻合良好,在液膜Reynolds数Rel< 1200范围内,模型预测停留时间偏大,讨论了模型预测偏差与液膜流型的关系。  相似文献   

15.
采用改进的RNG k-ε湍流模型和欧拉多相流模型,对一种单入口双进气道旋风分离器内的气固多相紊流过程进行数值模拟。计算得到旋风分离器内不同粒径颗粒速度和浓度分布规律,结果表明:大粒径颗粒比小粒径颗粒轴向速度分布更平坦,切向速度峰值位置和外准自由涡区也越向壁面靠近;与普通单入口旋风分离器相比,相同处理量时,此种旋风分离器内速度和不同粒径颗粒浓度分布轴对称性更好,大粒径颗粒切向速度峰值位置外移更明显,筒体段颗粒有更向壁面浓集的趋势,锥体段不同轴向位置处中心旋流区双进气道的颗粒浓度低于单进气道的。小粒径颗粒捕集能力增强,有助于提高分离器分离效率,减少不稳定流动导致结焦的颗粒源供给,从流动角度保证了抗结焦和长周期稳定操作。  相似文献   

16.
挟带分离高度(T.D.H.)是流化床层以上气流挟带量为稳定含量的一段高度。在这段高度内,对于任何特定的表观气速,均有一个最大粒径值,大于此粒径的所有颗粒将返回流化床中,较小粒径的颗粒,其沉降速度小于表观气速,将被气流带入反应器的内旋风分离器中。在这里大部分这种颗粒被回收,经浸入的料腿送回流化床中。于是,最大粒径d_(pmax)的预测,对于一个优良的旋风分离器的设计是至关重要的;这也是确定旋风分离器的积尘效率的所必需。诚然,回收挟带的颗粒对降低触媒的损耗,减小后工序的设备沾污、大气污染及床内颗粒度分布的变化(这种变化影响流化性质)是十分必要的。  相似文献   

17.
内构件流化床内颗粒停留时间分布及压降的研究   总被引:2,自引:0,他引:2  
在一内径100 mm设有数块水平挡板、底部连续加料与上部溢流排料的流化床内,采用粒径为0.04~1.0 mm的精钛矿颗粒,进行了加料速率、流化气速以及内构件间距等不同因素对物料在床内停留时间及压降影响的实验研究,发现在气固并流向上的流化床内增设水平挡板且d/H=1时,可形成稳定流化状态.研究结果表明流化床中的持料量主要取决于流化气速,平均停留时间随流化气速和进料速率增加而降低.平衡时床内颗粒平均粒径大于进料颗粒的平均粒径,使得床内小颗粒停留时间减少,大颗粒停留时间延长,可满足各种粒度颗粒所需的反应时间.通过简化经验公式计算表明,大而重的颗粒趋于沉积床底,小而轻的颗粒趋于漂浮床顶.实验数据可为此类床型用于气固相加工提供有益参考.  相似文献   

18.
在耦合流化床反应器大型冷模实验装置上,考察了不同表观气速下FCC颗粒在耦合流化床内截面平均密度的轴向分布. 结果表明,反应器轴向固含率可分为底部流化床区域和上部提升管区域. 前者的密相区平均固含率随表观气速增大而减小;后者的平均固含率随表观气速Ug增大而增大,Ug<0.58 m/s时固含率分布均匀,Ug=0.70~1.04 m/s时提升管出口出现约束返混区(>8.62 m),Ug>1.16 m/s时提升管底部出现密度重整区(3.82~4.57 m)、加速平稳区(4.57~8.62 m)和出口返混区(>8.62 m). 确定了耦合反应器内提升管区域截面平均固含率的影响参数,并利用实验数据回归了平均固含率的轴向分布经验模型,计算值与实验值吻合较好.  相似文献   

19.
基于欧拉双流体模型和颗粒流动理论对实验室规模的循环流化床气化炉进行了全三维模拟,考察了炉内压力和固体颗粒的分布特征,并进一步比较了操作条件对炉内气固两相循环流动的影响差异。模拟结果表明:提升管内呈上稀下浓的颗粒分布,径向处存在边壁浓中心稀的环合结构,下降管内能够形成堆积较为密实的料封,模拟得到的系统压力环路与试验值较吻合。藏量、粒径和入口气速均会影响炉内的固体颗粒浓度和压力分布,合适的粒径和入口气速条件与颗粒终端速度的匹配是影响炉内稳定循环流化的关键因素。  相似文献   

20.
采用脉冲示踪法在内置螺旋挡板冷态鼓泡流化床上研究了螺旋挡板、加料速率、流化风速、颗粒粒径和床料高度对颗粒在流化床内停留时间分布的影响. 结果表明,颗粒停留时间的无量纲方差从无螺旋挡板时的0.558减小到有螺旋挡板时的0.085,螺旋挡板可有效抑制颗粒返混,增大颗粒运动的平推流趋势;加料速率增大为约2倍时,停留时间减小为约50%,流动更趋向于平推流;床料高度增加,颗粒返混加剧,颗粒平均停留时间及无量纲方差均增大,颗粒运动向全混流靠近;随流化风速增大,颗粒平均停留时间变长;实验范围内,颗粒粒径对颗粒停留时间分布影响不大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号