首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Operation of variable speed wind turbine generator (WTG) in the above-rated region characterized by high turbulence intensities demands a trade-off between two performance metrics: maximization of energy harvested from the wind and minimization of damage caused by mechanical fatigue. This paper presents a learning adaptive controller for output power leveling and decrementing cyclic loads on the drive train. The proposed controller incorporates a linear quadratic Gaussian (LQG) augmented by a neurocontroller (NC) and regulates rotational speed by specifying the demanded generator torque. Pitch control ensures rated power output. A second-order model and a stochastic wind field model are used in the analysis. The LQG is used as a basis upon which the performance of the proposed paradigm in the trade-off studies is assessed. Simulation results indicate the proposed control scheme effectively harmonizes the relation between rotor speed and the highly turbulent wind speed thereby regulating shaft moments and maintaining rated power.  相似文献   

2.
Probabilistic paradigms for wind turbine controller design have been gaining attention. Motivation derives from the need to replace outdated empirical-based designs with more physically relevant models. This paper proposes an adaptive controller in the form of a linear quadratic Gaussian (LQG) for control of a stall-regulated, variable speed wind turbine generator (WTG). In the control scheme, the strategy is twofold: maximization of energy captured from the wind and minimization of the damage caused by mechanical fatigue due to variation of torque peaks generated by wind gusts. Estimated aerodynamic torque and rotational speed are used to determine the most favorable control strategy to stabilize the plant at all operating points (OPs). The performance of the proposed controller is compared with the classical proportional-integral-derivative (PID) controller. The LQG is seen to be significantly more efficient especially in the alleviation of high aerodynamic torque variations and hence mechanical stresses on the plant drive train. Simulation results validate the effectiveness of the proposed method.  相似文献   

3.
The case has been established that the wind power plant must be treated as an integral part of the electric system, thereby constituting the wind energy conversion system. Recent advancement in size and technology of wind turbines requires sophisticated control systems to effectively optimize energy conversion and enhance grid integration. As a first step toward controller design, modelling has become a prerequisite. This paper explores controller design based on modelling the wind speed as a stochastic process, and the wind turbine as a multi‐mass system with a soft shaft linking the turbine with the doubly fed induction generator. A control strategy incorporating a linear quadratic Gaussian (LQG) that relies on state estimation for full‐state feedback is proposed to augment a linear controller for generator torque control. The control objectives are to reduce stresses on the drivetrain and to ensure operation geared toward optimal power conversion. This study focuses on above‐rated wind speeds, and the LQG's main purpose is to add damping to the drivetrain, thereby minimizing cyclic fatigue, while a pitch control mechanism prevents rotor overspeed, thereby maintaining rated power. Simulations show the efficacy of the proposed paradigm in meeting the control objectives. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Reliable and powerful control strategies are needed for wind energy conversion systems to achieve maximum performance. A new control strategy for a variable speed, variable pitch wind turbine is proposed in this paper for the above-rated power operating condition. This multivariable control strategy is realized by combining a nonlinear dynamic state feedback torque control strategy with a linear control strategy for blade pitch angle. A comparison with existing strategies, PID and LQG controllers, is performed. The proposed approach results in better power regulation. The new control strategy has been validated using an aeroelastic wind turbine simulator developed by NREL for a high turbulence wind condition.  相似文献   

5.
This paper presents a sensorless control for a variable speed wind turbine (WT) operating at partial load in order to eliminate the direct measurement of the wind speed. In this proposal, the estimated aerodynamic torque is used to determine the optimal reference of the speed control for maximum energy conversion. The maximization of the efficiency on energy conversion and the minimization of detrimental dynamical loads are control trade-offs considered in the design of an optimal discrete-time feedback LQG/LTR controller for the Wind Energy Conversion System (WECS), which is based on the optimization of a quadratic cost function. The performance of the proposed control when the WT is submitted to a gust or step variation on wind speed is evaluated from computational simulations. It is also presented some proposals for sensorless control of the electrical generator.  相似文献   

6.
提出了大型变速变桨风力发电机组在不同控制阶段的优化控制策略。在低风速时,采用自适应转矩控制方式,实现机组的变速运行,追踪最佳风能利用系数。在额定风速以上时,为了解决传统桨距控制方式系统超调量大的问题,提出了一种新型气动转矩观测器,并将气动转矩与发电机转矩偏差输入控制器。通过Bladed外部控制器模块编程并进行仿真,结果表明,所提出的控制策略能够更好地追踪最大功率点,并改善桨距控制效果,稳定功率输出。  相似文献   

7.
The work presented in this paper analyses, with the help of experiments on a 2.2 kW test bench, the possibility to participate in the primary frequency control with a variable speed wind generator. A power reserve is obtained with the help of the generator torque control by following a power reference value lower than the maximum power which must be extracted from the wind. This approach allows also using a part of the kinetic energy in the blades inertia to contribute to this reserve.The dynamic tests carried out on the test bench, by using medium and high variable wind speeds, confirm the capacity of the wind turbine generator (WTG) to participate in the primary frequency control.  相似文献   

8.
This paper deals with the speed controller design in DFIG based wind turbines, and investigates stability and performance of the drive train dynamics against different control strategies. It is shown that speed controller design based on the single mass drive train model may result in unstable mechanical modes, because it ignores the dynamics of the flexible shaft. Then, another control approach, known as feedforward compensation of the shaft torsional torque, is examined. It is shown that this control method results in poorly damped oscillations of torsional torque and turbine speed during the transient conditions. The open loop transfer function from the electromagnetic torque to the generator speed contains a dual quadratic function representing the dynamics of flexible shaft. The dual quadratic function comprises resonant and anti-resonant frequencies that greatly affect the stability of the drive train dynamics. Next, a step-by-step procedure for designing the speed controller based on the two-mass drive train model is proposed. The proposed speed controller provides stable closed loop system, zero tracking error, low-frequency disturbance rejection, and open-loop gain attenuation at the resonant frequency. At the end, performance of the proposed controller is investigated by the time domain simulations.  相似文献   

9.
Nowadays, wind turbine generator (WTG) is increasingly required to provide control capabilities regarding output power. Under this scenario, this paper proposes an output power control of WTG using pitch angle control connected to small power systems. By means of the proposed method, output power control of WTG considering states of power system becomes possible, and in general both conflicting objectives of output power leveling and acquisition power increase are achieved. In this control approach, WTG is given output power command by fuzzy reasoning which has three inputs for average wind speed, variance of wind speed, and absolute average of frequency deviation. Since fuzzy reasoning is used, it is possible to define output power command corresponding to wind speed condition and changing capacity of power system momentarily. Moreover, high performance pitch angle control based on output power command is achieved by generalized predictive control (GPC). The simulation results by using actual detailed model for wind power system show the effectiveness of the proposed method.  相似文献   

10.
A wind turbine generator (WTG) system's output is not constant and fluctuates depending on wind conditions. Fluctuating power causes frequency deviations and adverse effects to an isolated power system when large output power from WTG systems is penetrated in the power system. This paper presents an output power control methodology of a WTG for frequency control using a load power estimator. The load power is estimated by a disturbance observer, and the output power command of the WTG is determined according to the estimated load. Besides, the WTG can also be controlled during wind turbulence since the output power command is determined by considering wind conditions. The reduction of the power system frequency deviation by using the WTG can be achieved by the proposed method. The effectiveness of the proposed method is validated by numerical simulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A. Kumar  K. Stol 《风能》2010,13(5):419-432
As wind turbines are becoming larger, wind turbine control must now encompass load control objectives as well as power and speed control to achieve a low cost of energy. Due to the inherent non‐linearities in a wind turbine system, the use of non‐linear model‐based controllers has the potential to increase control performance. A non‐linear feedback linearization controller with an Extended Kalman Filter is successfully used to control a FAST model of the controls advanced research turbine with active blade, tower and drive‐train dynamics in above rated wind conditions. The controller exhibits reductions in low speed shaft fatigue damage equivalent loads, power regulation and speed regulation when compared to a Gain Scheduled Proportional Integral controller, designed for speed regulation alone. The feedback linearization controller shows better rotor speed regulation than a Linear Quadratic Regulator (LQR) at close to rated wind speeds, but poorer rotor speed regulation at higher wind speeds. This is due to modeling inaccuracies and the addition of unmodeled dynamics during simulation. Similar performance between the feedback linearization controller and the LQR in reducing drive‐train fatigue damage and power regulation is observed. Improvements in control performance may be achieved through increasing the accuracy of the non‐linear model used for controller design. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The aim of the paper is to demonstrate the way in which mechanical power variations, due to tower shadow and wind turbulence, influence control performance of power system stabilizer (PSS) loops for doubly-fed induction generators (DFIGs). The PSS auxiliary loops are applied on a specific DFIG control scheme, the flux magnitude and angle controller (FMAC). However, since the PSS signal is applied at the output of the basic controller, the PSS performance characteristics displayed are deemed typical for DFIG control schemes in general. The relative capabilities of PSS controllers based on stator power, rotor speed, and network frequency, when the DFIG turbine is subjected to aerodynamic torque variations, are investigated via simulation studies. A two-generator aggregate model of a wind farm is introduced, which enables the influence of tower shadow and wind turbulence on both an individual turbine and on the overall wind farm itself to be assessed.  相似文献   

13.
The electrical energy production and reliability benefits of a wind energy conversion system (WECS) at a specific site depend on many factors, including the statistical characteristics of the site wind speed and the design characteristics of the wind turbine generator (WTG) itself, particularly the cut-in, rated and cut-out wind speed parameters. In general, the higher the degree of the wind site matching with a WECS is, the more are the energy and reliability benefits. An electrical energy production and reliability benefit index designated as the Equivalent Capacity Ratio (ECR) is introduced in this paper. This index can be used to indicate the electrical energy production, the annual equivalent utilization time and the credit of a WECS, and quantify the degree of wind site matching with a WECS. The equivalent capacity of a WECS is modeled as the expected value of the power output random variable with the probability density function of the site wind speed. The analytical formulation of the ECR is based on a mathematical derivation with high accuracy. Twelve WTG types and two test systems are used to demonstrate the effectiveness of the proposed model. The results show that the ECR provides a useful index for a WTG to evaluate the energy production and the relative reliability performance in a power system, and can be used to assist in the determination of the optimal WTG type for a specific wind site.  相似文献   

14.
Reliability benefit analysis of adding WTG to a distribution system   总被引:9,自引:0,他引:9  
Wind turbine generators (WTG) used as alternative supply in a distribution system have different impacts on the system reliability performance than conventional alternative supplies due to the variable wind speed. This paper investigates the system reliability benefits of adding WTG as alternative supply in a rural distribution system. The wind generation interrupted energy benefit (WGIEB), the wind generation interruption cost benefit (WGICB), the equivalent number of conventional generators (ENCG) and the equivalent conventional generator capacity (ECGC) of one MW WTG are introduced. These indices provide direct reliability benefit indicators on the addition of WTG, and are important information for system planners to make planning decisions such as the selection of a wind site and the number of WTG. A test rural distribution system is utilized to illustrate the proposed technique. The effects on the system reliability benefits of the wind site selection and the number of wind units are investigated  相似文献   

15.
The proposal of hybrid drive grid‐connected wind turbine based on speed regulating differential mechanism (SRDM) has been made in this paper to generate constant‐frequency power without fully‐ or partially‐rated frequency converters so as well improve electric power quality. However, disturbances in the power grid including sudden load fluctuation and sub‐synchronous resonance (SSR) can lead to the pulsating torque to act on the shaft section between SG and exciter at the main generator collector, such that the speed regulating accuracy of SRDM is seriously affected. As a result, this paper synthesizes a new‐type fractional‐order sliding mode controller (FOSMC) with a load torque observer (LTO) for the high‐accuracy speed control of permanent magnet synchronous motor (PMSM) in SRDM. Taking advantage of ridge regression algorithm, related parameters including rotational inertia and viscous friction coefficient of speed regulating system are calculated accurately. Finally, comparative experiments are carried out under four cases of mean of 5, 10, 13, and 21 m/s wind speeds to verify the satisfactory performances of designed FOSMC with LTO. Comparative experimental results show that FOSMC with LTO can effectively eliminate undesirable chattering effect. Additionally, under operating conditions of changing wind speeds, SSR, and sudden load fluctuation in power grid, the output speed of SRDM that corresponds directly to the frequency output of SG can be steadily and accurately regulated by using proposed control scheme. SRDM equipped with designed controller enables the power frequency to meet the National Standard of PR China perfectly.  相似文献   

16.
Output power of wind turbine generator (WTG) is not constant and fluctuates due to wind speed changes. To reduce the adverse effects of the power system introducing WTGs, there are several published reports on output power control of WTGs detailing various researches based on pitch angle control, variable speed wind turbines, energy storage systems, and so on. In this context, this paper presents an integrated control method for a WF to reduce frequency deviations in a small power system. In this study, the WF achieves the frequency control with two control schemes: load estimation and short-term ahead wind speed prediction. For load estimation in the small power system, a minimal-order observer is used as disturbance observer. The estimated load is utilized to determine the output power command of the WF. To regulate the output power command of the WF according to wind speed changing, short-term ahead wind speed is predicted by using least-squares method. The predicted wind speed adjusts the output power command of the WF as a multiplying factor with fuzzy reasoning. By means of the proposed method, the WF can operate according to the wind and load conditions. In the WF system, each output power of the WTGs is controlled by regulating each pitch angle. For increasing acquisition power of the WF, a dispatch control method also is proposed. In the pitch angle control system of each WTG, generalized predictive control (GPC) is applied to enhance the control performance. Effectiveness of the proposed method is verified by the numerical simulations.  相似文献   

17.
Improvement of condition monitoring (CM) systems for wind turbines (WTs) and reduction of the cost of wind energy are possible if knowledge about the condition of different WT components is available. CM based on the WT drive train shaft torque signal can give a better understanding of the gearbox failure mechanisms as well as provide a method for detecting mass imbalance and aerodynamic asymmetry. The major obstacle preventing the industrial application of CM based on the shaft torque signal is the costly measurement equipment which is impractical for long‐term use on operating WTs. This paper suggests a novel approach for low‐cost, indirect monitoring of the shaft torque from standard WT measurements. The shaft torque is estimated recursively from measurements of generator torque, high speed shaft and low speed shaft angular speeds using the well‐known Kalman filter theory. The performance of the augmented Kalman filter with fading memory (AKFF) is compared with the augmented Kalman filter (AKF) using simulated data of the WT for different load conditions, measurement noise levels and WT fault scenarios. A multiple‐model algorithm, based on a set of different Kalman filters, is designed for practical implementation of the shaft torque estimator. Its performance is validated for a scenario where there are frequent changes of operating points. The proposed cost‐effective shaft torque estimator overcomes all major problems, which prevent the industrial application of CM systems based on shaft torque measurements. Future work will be focused on validating the method using experimental data and developing suitable signal processing algorithms for fault detection. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The modelling and control of a wide‐range variable speed wind turbine based on a synchronous generator are presented. Two different methods to control the operation of the synchronous generator are investigated, i.e. load angle control and instantaneous vector control. The dynamic performance characteristics of these control strategies are evaluated and compared using three model representations of the generator: a non‐reduced order model including both stator and rotor transients, a reduced order model with stator transients neglected, and a steady‐state model that neglects generator electrical dynamics. Assessment on the performance of grid‐side controller is shown during network fault and frequency variation. A simplified wind turbine model representation is also developed and proposed for large‐scale power system studies. Simulation results in Matlab/Simulink are presented and discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
This paper addresses the problem of controlling power generation in variable-speed wind energy conversion systems (VS-WECS). These systems have two operation regions depending on the wind turbine tip-speed ratio. They are distinguished by minimum phase behavior in one of these regions and a nonminimum phase in the other one. A sliding mode control strategy is then proposed to ensure stability in both operation regions and to impose the ideal feedback control solution despite model uncertainties. The proposed sliding mode control strategy presents attractive features such as robustness to parametric uncertainties of the turbine and the generator as well as to electric grid disturbances. The proposed sliding mode control approach has been simulated on a 1.5-MW three-blade wind turbine to evaluate its consistency and performance. The next step was the validation using the National Renewable Energy Laboratory (NREL) wind turbine simulator called the fatigue, aerodynamics, structures, and turbulence code (FAST). Both simulation and validation results show that the proposed control strategy is effective in terms of power regulation. Moreover, the sliding mode approach is arranged so as to produce no chattering in the generated torque that could lead to increased mechanical stress because of strong torque variations.  相似文献   

20.
This paper addresses the design and implementation of the line drop secondary voltage control (LDSVC) for the doubly fed induction generator‐wind turbine (DFIG‐WT) complemented with reactive power allocation algorithm to achieve more efficient voltage regulation, reactive power compensation and to enhance the transient stability margin of the electric power system. The LDSVC is used to generate the local voltage reference, providing an improvement for overall voltage profile. The paper presents the influence of the integration of variable speed wind turbines‐based doubly fed induction generator (DFIG) while employing LDSVC for increasing the transient stability margin. This paper proposes an improved voltage control scheme, based on a secondary voltage controller complemented with an automatic gain controller (AGC). The scheme is applied to a wind energy system incorporating DFIG‐based wind turbines. The controller structure is developed and the performance of the self‐tuning AGC scheme is developed and analysed. The proposed controller is tested in response to system contingencies for different short circuit ratios. The performance of the secondary voltage control without and with AGC is verified. The influence of the AGC in improving the transient response and damping of voltage oscillations is verified. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号