首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Optical Materials》2014,36(12):2376-2381
Borate crystal is an important type of nonlinear optical crystals used in frequency conversion in all-solid-state lasers. Especially, LiB3O5 (LBO), CsB3O5 (CBO) and CsLiB6O10 (CLBO) are the most advanced. Although these borate crystals are all constructed by the same anionic group-(B3O7)5−, they show different nonlinear optical properties. In this study, bulk weak absorption values of three borate crystals have been studied at 1064 nm by a photothermal common-path interferometer. The bulk weak absorption values of them along [1 0 0], [0 1 0] and [0 0 1] directions were obtained, respectively, to be approximately 17.5 ppm cm−1, 15 ppm cm−1 and 20 ppm cm−1 (LBO); 80 ppm cm−1, 100 ppm cm−1 and 40 ppm cm−1 (CBO); 600 ppm cm−1, 600 ppm cm−1 and 150 ppm cm−1 (CLBO) at 1064 nm. The results showed an obvious discrepancy of the values of these crystals along three axis directions. A correlation between the bulk weak absorption property and crystal intrinsic structure was then discussed. It is found that the bulk weak absorption values strongly depend on the interstitial area surrounded by the B–O frames. The interstitial area is larger, the bulk weak absorption value is higher.  相似文献   

2.
Tm3+/Al3+ co-doped silica glass was prepared by sol–gel method combined with high temperature sintering. Glasses with compositions of xTm2O3–15xAl2O3–(100  16x) SiO2 (in mol%, x = 0.1, 0.3, 0.5, 0.8 and 1.0) were prepared. The high thulium doped silica glass was realized. Their spectroscopic parameters were calculated and analyzed by Judd–Ofelt theory. Large absorption cross section (4.65 × 10−21 cm2 at 1668 nm) and stimulated emission cross section (6.00 × 10−21 cm2 at 1812 nm), as well as low hydroxyl content (0.180 cm−1), long fluorescence lifetime (834 μs at 1800 nm), large σem × τrad (30.05 × 10−21 cm2 ms) and large relative intensity ratio of the 1.8 μm (3F4  3H6) to 1.46 (3H4  3F4) emissions (90.33) are achieved in this Tm3+/Al3+ co-doped silica glasses. According to emission characteristics, the optimum thulium doping concentration is around 0.8 mol%. The cross relaxation (CR) between ground and excited states of Tm3+ ions was used to explain the optimum thulium doping concentration. These results suggest that the sol–gel method is an effective way to prepare Tm3+ doped silica glass with high Tm3+ doping and prospective spectroscopic properties.  相似文献   

3.
《Materials Letters》2006,60(9-10):1224-1228
Pure and 2 mol% Mn doped Ba0.6Sr0.4TiO3 (BST) thin films have been deposited on La0.67Sr0.33MnO3 (LSMO) coated single-crystal (001) oriented LaAlO3 substrates using pulsed-laser deposition technique. The bilayer films of BST and LSMO were epitaxially grown in pure single-oriented perovskite phases for both samples, and an enhanced crystallization effect in the BST film was obtained by the addition of Mn, which were confirmed by X-ray diffraction (XRD) and in situ reflective high energy electron diffraction (RHEED) analyses. The dielectric properties of the BST thin films were measured at 100 kHz and 300 K with a parallel-plate capacitor configuration. The results have revealed that an appropriate concentration acceptor doping is very effective to increase dielectric tunability, and to reduce loss tangent and leakage current of BST thin films. The figure-of-merit (FOM) factor value increases from 11 (undoped) to 40 (Mn doped) under an applied electric field of 200 kV/cm. The leakage current density of the BST thin films at a negative bias field of 200 kV/cm decreases from 2.5 × 10 4 A/cm2 to 1.1 × 10 6 A/cm2 by Mn doping. Furthermore, a scanning-tip microwave near-field microscope has been employed to study the local microwave dielectric properties of the BST thin films at 2.48 GHz. The Mn doped BST film is more homogeneous, demonstrating its more potential applications in tunable microwave devices.  相似文献   

4.
The Judd–Ofelt theory has been applied to analyze absorption spectra of Ho3+ ion in HoAl3(BO3)4 measured in spectral range 300–700 nm at room temperature. The Judd–Ofelt spectroscopic parameters have been determined as: Ω2 = 18.87 × 10−20 cm2, Ω4 = 17.04 × 10−20 cm2, Ω6 = 9.21 × 10−20 cm2. These parameters have been used to calculate radiative lifetimes and branching ratios of the luminescence manifolds. Three luminescent bands were found in the spectral range 450–700 nm ascribed to transitions from the 5F5, (5F4, 5S2) and 3K8 states to the ground state 5I8. Experimental intensities of these luminescence transitions were compared with those calculated by using Judd–Ofelt theory and the system of kinetic equations for populations of starting luminescing states. Probabilities of radiativeless transitions were evaluated from this comparison.  相似文献   

5.
The single crystals with stoichiometry close to 1:1:2 of CuInTe2 (CIT) have been grown by chemical vapor transport (CVT) technique using iodine as the transporting agent at different growth temperatures. Single crystal X-ray diffraction studies have confirmed the chalcopyrite structure for the grown crystals and the volume of unit cell is found to be the same for the crystals grown at different conditions. Energy dispersive X-ray (EDAX) analysis of CIT single crystals grown shows almost the same stoichiometric compositions. Scanning electron microscope (SEM) analysis reveals kink, step and layer patterns on the surface of CIT single crystals depending on the growth temperatures. The optical absorption spectra of as-grown CIT single crystals grown at different conditions show that they have same band gap energies (1.0405 eV). Raman spectra exhibit a high intensity peak of A1 mode at 123 cm?1. Annealed at 473 K in nitrogen atmosphere for 40 h CIT single crystals have higher hole mobility (105.6 cm2V?1s?1) and hole concentration (23.28 × 1017 cm?3) compared with values of hole mobility (63.69 cm2 V?1 s?1) and hole concentration (6.99 × 1015 cm?3) of the as-grown CIT single crystals.  相似文献   

6.
《Optical Materials》2008,30(12):1635-1639
Novel pure and cobalt-doped magnesium borate crystals (Mg3B2O6) have been grown successfully by the Czochralski technique for the first time. Crystal growth, X-ray powder diffraction (XRD) analysis, absorption spectrum, fluorescence spectrum as well as fluorescence decay curve of Co2+:Mg3B2O6 (MBO) were described. From the absorption peaks for the octahedral Co2+ ions, the crystal-field parameter Dq and the Racah parameter B were estimated to be 943.3 cm−1 and 821.6 cm−1, respectively. The fluorescence lifetime of the transition 4T1(4P)  4T2 centered at 717 nm was measured to be 9.68 ms.  相似文献   

7.
The effect of neutron irradiation on a lithium tetraborate (Li2B4O7, LBO) single crystal has been investigated. The crystals of high optical quality are found to be quite stable under high neutron fluence. This study shows that LBO crystals can be used as a proportional counter for neutron fluxes of the order 109 cm−2 s−1 and higher. The detectors fabricated were found to have a sensitivity of ∼3×10−18 A (nv)−1.  相似文献   

8.
The third order nonlinear optical, electric and dielectric properties of an organic stilbazolium derivative of 4-N,N-dimethylamino-N′-methylstilbazolium p-methoxybenzenesulfonate (DSMOS) crystal are reported. The nonlinear refractive index (n2), two photon absorption coefficient (β) and third order optical susceptibility χ(3) have been measured by Z-scan technique using Gaussian beam from the Nd:YAG laser at 1064 nm. The results show a large negative nonlinear refractive index (n2 = −1.122 × 10−9 cm2/W) with a molecular two photon absorption coefficient β value of 3.625 × 10−6 cm/W. The low dielectric constant observed in the high frequency region indicates the suitability of the sample for electro-optic applications. The surface features are also investigated by atomic force microscopy (AFM).  相似文献   

9.
《Materials Letters》2005,59(19-20):2408-2411
The A-site deficient perovskite Nd2/3TiO3  δ was synthesized under an H2–CO2 gas mixture. The sample was found to have slight oxygen deficiency of δ∼0.012. The crystal structure was assigned to a double perovskite structure with orthorhombic space group Pmmm, as in the case of La2/3TiO3  δ. Electrical conductivity measurement has also been performed. The temperature dependence of conductivity shows that electronic transport in Nd2/3TiO2.988 is well described by Emin–Holstein adiabatic small polaron model. The polaron density extracted from the conductivity measurement is ∼1.96 × 1020 cm 3. This result agrees well with nominal polaron density for Nd2/3TiO2.988, ∼2.1 × 1020cm 3. We have also derived important quantities for transport in Nd2/3TiO2.988.  相似文献   

10.
The aim of this work was to investigate the effects of interstitial ions in the novel Li4 + 2xZnxSi1  xO4 (x = 0.04) compound prepared via sol gel method. The compound was indexed to the monoclinic unit cell in the space group P21/m and the chemical composition of the compound was very close to the designed composition. The introduction of two interstitial Li+ ions increased charge carrier concentration in the doped system resulting in an enhancement of conductivity by an order of magnitude as compared to that of the parent compound, Li4SiO4. The compound of Li4.08Zn0.04Si0.96O4 exhibited total conductivity values of 2.51 × 10 5 S cm 1 at ambient temperature and 3.01 × 10 3 S cm 1 at 500 °C. Ionic transference number corresponding to Li+ ion transport was also found to be higher than the value obtained for the parent compound. This proved that interstitial Li+ ions contributed to the total conductivity in the sample. Linear sweep voltammetry result showed that the Li4.08Zn0.04Si0.96O4 ceramic electrolyte was electrochemically stable up to 5.80 V versus a Li/Li+ reference electrode.  相似文献   

11.
《Materials Letters》2007,61(14-15):3030-3036
Transparent conducting thin films of F:SnO2 have been deposited onto preheated glass substrates by a spray pyrolysis technique using pentahydrate stannic chloride (SnCl4·5H2O) and ammonium fluoride (NH4F) as precursors and mixture of water and propane-2-ol as solvent. The concentration of SnCl4·5H2O and NH4F is kept fixed and the ratio of water and propane-2-ol solvent in the spraying solution is varied. A fine spray of the source solution using air as a carrier gas has grown films of thickness up to 995 nm. Optical absorption, X-ray diffraction, Van der Pauw technique for measurement of a sheet resistance and Hall effect measurements at room temperature for determination of carrier density and conductivity have been used. The as-deposited films are of polycrystalline SnO2 with a tetragonal crystal structure and are preferentially having orientation along the (200) direction with texture coefficient as high as 6.16. The average grain size for the as-deposited sample is found to be of the order of 44 nm. The films have moderate optical transmission (up to 70–85% at 550 nm). The figure of merit (ϕ) values vary from 1.95 · 10 3 to 35.68 · 10 3 Ω 1. The films are heavily doped, degenerate and exhibit n-type electrical conductivity. The lowest sheet resistance (Rs) for the optimized sample is 5.1 Ω. The films have a resistivity of 5.43 · 10 4 Ω cm and mobility around 7.38 cm2 V 1 s 1.  相似文献   

12.
Alkaline aluminum phosphate glasses (NMAP) with excellent chemical durability for thermal ion-exchanged optical waveguide have been designed and investigated. The transition temperature Tg (470 °C) is higher than the ion-exchange temperature (390 °C), which is favorable to sustain the stability of the glass structure for planar waveguide fabrication. The effective diffusion coefficient De of K+–Na+ ion exchange in NMAP glasses is 0.110 μm2/min, indicating that ion exchange can be achieved efficiently in the optical glasses. Single-mode channel waveguide has been fabricated on Er3+/Yb3+ doped NMAP glass substrate by standard micro-fabrication and K+–Na+ ion exchange. The mode field diameter is 9.6 μm in the horizontal direction and 6.0 μm in the vertical direction, respectively, indicating an excellent overlap with a standard single-mode fiber. Judd–Ofelt intensity parameter Ω2 is 5.47 × 10−20 cm2, implying a strong asymmetrical and covalent environment around Er3+ in the optical glasses. The full width at half maximum and maximum stimulated emission cross section of the 4I13/2  4I15/2 are 30 nm and 6.80 × 10−21 cm2, respectively, demonstrating that the phosphate glasses are potential glass candidates in developing compact optoelectronic devices. Pr3+, Tm3+ and Ho3+ doped NMAP glasses are promising candidates to fabricate waveguide amplifiers and lasers operating at special telecommunication windows.  相似文献   

13.
Deep levels in AlGaN/GaN HEMTs on Si substrate are known to be responsible for trapping processes like: threshold voltage shift, leakage current, degradation in saturation current and hysteresis effect. The related deep levels are directly characterized by Conductance Deep Level Transient Spectroscopy (CDLTS) method. Hereby we have detected four carrier traps with activation energy of 0.83, 0.50, 0.20 and 0.07 eV and capture cross-section respectively of σ = 3.14 × 10 14 cm2, σ = 2.57 × 10 15 cm2, σ = 3.03 × 10 17 cm2 and σ = 2.65 × 10 15 cm2. All these traps are located between the substrate and the two-dimensional electron gas (2DEG) channel.  相似文献   

14.
《Optical Materials》2005,27(3):579-584
CdTe nanocrystals were prepared by mechanical alloying the elemental Cd and Te powders. The formation of CdTe with a single cubic phase after 20 h of ball milling was confirmed by X-ray diffraction (XRD). The surface of as-milled CdTe nanoparticles was then capped with polarization TOP/TOPO or (Na3PO4)n organic ligand, which resulted in colorful dispersion solution with optical absorption peaks located at 573 nm and 525 nm, respectively. The third-order non-linearity, namely, the non-linear refraction and two-photon absorption (TPA) coefficient, of the capped CdTe dispersion samples were evaluated using Z-scan technique. The fitting of Z-scan experimental data with a special equation demonstrated that the capped CdTe nanocrystals possess large third-order susceptibilities at resonant wavelength. The non-linear figure of merit (γ/β) for 20 h as-milled CdTe nanocrystals after capping with TOP/TOPO was determined to be ∼ −2 × 10−5 m, which is nearly 215 times larger than the value reported for bulk CdTe crystals.  相似文献   

15.
Bis(tetrabutylammonium)bis(4,5-dithiolato-1,3-dithiole-2-thione)copper (BCDT) was synthesized and its third-order optical nonlinearity was characterized using picosecond Z-scan at 1064 nm. The Z-scan spectra reveal a large negative nonlinear refraction coefficient n2 as high as 4.0 × 10−18 m2/W and a slight two-photon absorption β, which is determined to be 3.4 × 10−12 m/W. The molecular second-order hyperpolarizability γ was calculated to be 6.5 × 10−32 esu. All these results suggest that this material has potential for the application of all-optical switching.  相似文献   

16.
Herein, we report the effect of silver ions on the physical, antimicrobial and cytocompatibility properties of wet chemically synthesized silver doped Ca10?xAgx(PO4)6(OH)2 (0.0  x  0.5) hydroxyapatites (HAp). Silver ions containing HAp exhibit the comparable density, hardness and enhanced antimicrobial properties, in comparison to parent HAp. The optical absorption measurements confirm the presence of silver ions in the doped compositions, which are responsible for as increased antimicrobial property of doped HAp materials for x > 0.3. The cytotoxicity behavior of the doped HAp was evaluated using mouse fibroblast (L929) cell line. The important result has been that doped HAp (x > 0.3) exhibit statistically (significant) lower cell viability in comparison to undoped HAp. However, no difference in cellular functionality on doped HAp surfaces, in terms of cell adhesion and proliferation could be qualitatively observed in reference to undoped HAp. In order to explain the observed antimicrobial and cell viability properties, the in vitro release of Ag+ ions has been quantified using Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) and solubility was measured by weight loss in acetate buffer solution.  相似文献   

17.
《Materials Letters》2007,61(11-12):2499-2501
A single crystal of Tb: KLu(WO4)2 with dimensions of 40 mm × 40 mm × 18 mm has been grown by the top-seeded solution growth (TSSG) method. The color of the crystal is brown. Absorption and fluorescence spectra were measured at room temperature. The measured specific heat is a little lower than that of Yb: KLW (0.365 J/g K) at 90 °C. The measured mean linear coefficients of thermal expansion are αa = 17.1643 × 10 6 K 1, αa = 14.0896 × 10 6 K 1, αb = 8.7938 × 10 6 K 1, αc = 23.1745 × 10 6 K 1, αc = 20.2866 × 10 6 K 1. The results indicate that the crystal has a large anisotropy. The refractive index was measured.  相似文献   

18.
The electroresistance and magnetoresistance effects have been investigated in La0.9Ba0.1MnO3 epitaxial thin films. Tensile strain caused by substrate mismatch makes the Curie temperature TC of the film at ∼300 K. The influence of an applied dc-current on the resistance in the absence of a magnetic field was studied. Significant change of the peak resistance at different currents was found. The reduction of the peak resistance reaches ∼27% with an electric current density up to 1.3 × 105 A cm−2. We also studied colossal magnetoresistance (CMR) effect in the films. Applying a magnetic field of 2 T could lead to a magnetoresistance as large as 42%. The reduction of resistance caused by a current density ∼1.3 × 105 A cm−2 was found to be equivalent to the CMR effect caused by 1.5 T near TC. The phenomenon that the resistance in CMR manganites could be easily controlled by the electric current should be of high interest for both fundamental research and practical applications.  相似文献   

19.
X-band electron paramagnetic resonance (EPR) studies of Cr3+ doped lithium potassium sulphate single crystals have been done at room temperature. The Cr3+ crystal field and spin Hamiltonian parameters have been evaluated by employing resonance line positions observed in the EPR spectra for different orientations of external magnetic field. The evaluated g, D and E values are: gx = 2.0763 ± 0.0002, gy = 1.9878 ± 0.0002, gz = 1.8685 ± 0.0002 and D = 549 ± 2 × 10?4 cm?1, E = 183 ± 2 × 10?4 cm?1. Using EPR data the site symmetry of Cr3+ ion in the crystal is discussed. Cr3+ ion enters the lattice substitutionally replacing K+ site. The optical absorption study of the single crystal is also done in 195–925 nm wavelength range at room temperature. By correlating optical and EPR data the nature of bonding in the crystal is discussed. The calculated values of Racah parameters (B and C), crystal field parameter (Dq) and nephelauxetic parameters (h and k) are obtained as: B = 697, C = 3247, Dq = 2050 cm?1, h = 1.146 and k = 0.21.  相似文献   

20.
《Materials Research Bulletin》2006,41(7):1392-1402
In situ high temperature X-ray diffraction (HTXRD) studies on monoclinic silicalite-1 (S-1, silica polymorph of ZSM-5) and an orthorhombic metallosilicate molecular sieve, zirconium silicalite-1 (ZrS-1) with MFI structure (Si/Zr = 50) have been carried out using a laboratory X-ray diffractometer with an Anton Parr HTK 1600 attachment. While the structure of the S-1 collapsed at 1123 K forming α-cristobalite. S-1 and ZrS-1 showed a complex thermal expansion behavior in the temperature range 298–1023 K, ZrS-1 was stable. Powder X-ray diffraction (PXRD) data taken in this region have shown strong negative lattice thermal expansion coefficient, αV = −6.75 × 10−6 and −17.92 × 10−6 K−1 in the temperature range 298–1023 K−1 for S-1 and ZrS-1 samples, respectively. The thermal expansion behavior of S-1 and ZrS-1 is anisotropic, with the relative strength of contraction along a axis is more than that along b and c axes. Three different thermal expansion regions could be identified in the overall temperature range (298–1023 K) studied, corroborating with the three steps of weight loss in the TG curve of ZrS-1 sample. While the region between 298 and 423 K, displays positive thermal expansion coefficient with αV = 2.647 × 10−6 and 4.24 × 10−6 K−1, the second region between 423 and 873 K shows strong negative thermal expansion (NTE) coefficient αV = −7.602 × 10−6 and −15.04 × 10−6 K−1, respectively, for S-1 and ZrS-1 samples. The region between 873 and 1023 K, shows a very strong NTE coefficient with αV = −12.08 × 10−6 and −45.622 × 10−6 K−1 for S-1 and ZrS-1, respectively, which is the highest in the whole temperature range studied. NTE seen over a temperature range 298–1023 K could be associated with transverse vibrations of bridging oxygen atoms in the structure which results in an apparent shortening of the Si–O distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号