首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
2.
以沙棘叶为原料,以DPPH?清除能力、总还原力为指标,评估沙棘叶提取物的体外抗氧化活性,并以沙棘叶提取物对乙酰胆碱酯酶的抑制能力为指标,考察其成为乙酰胆碱酯酶抑制剂的潜力。研究结果表明:5种不同乙醇体积分数的(40%、50%、60%、70%、80%)沙棘叶提取物均有较好的抗氧化活性与对乙酰胆碱酯酶抑制能力。以60%乙醇提取的沙棘叶提取物的DPPH?清除率、总还原力及乙酰胆碱酯酶抑制能力最强,分别为(85.80±1.39)%,3.06±0.18,(97.14±0.809)%,可作为抗氧化剂与乙酰胆碱酯酶抑制剂。筛选后的沙棘叶提取物对乙酰胆碱酯酶有较强的抑制能力,半数抑制质量浓度(IC50)值为(1.086±0.144)mg/mL,并且根据酶的抑制动力学分析得出对乙酰胆碱酯酶是竞争性大于非竞争性的混合可逆抑制类型。AutoDock分子对接结果也表明,沙棘叶活性成分与乙酰胆碱酯酶具有一定的对接亲和力。剂效相关性分析表明沙棘叶提取物的抗氧化、酶抑制活性与功能成分之间均存在良好的正相关性(P<0.05),沙棘叶提取物中起主要抗氧化与酶抑制作用的成分为多酚类化合物.  相似文献   

3.
Lily (Lilium spp.) has elegant flowers and beautiful colors, which makes it popular among people. However, the poor stress resistance and self-propagation ability of lily limit its application in landscaping to a great extent. In addition, transgenic technology is an important means to improve plant characteristics, but the lack of a stable and efficient genetic transformation system is still an important factor restricting the development of lily transgenic technology. Therefore, this study established a good lily regeneration system by screening different explants and plant growth regulators of different concentrations. Then, the genetic transformation system of lily was optimized by screening the critical concentration of antibiotics, the concentration of bacterial solution, and the infection time. Finally, the homologous lily cold resistance gene LlNAC2 and bulblet generation gene LaKNOX1 were successfully transferred to ‘Siberia’ and ‘Sorbonne’ to obtain lily transgenic lines. The results showed that when the stem axis was used as explant in ‘Siberia’, the induction rate was as high as 87%. The induction rate of ‘Sorbonne’ was as high as 91.7% when the filaments were used as explants. At the same time, in the optimized genetic transformation system, the transformation rate of ‘Siberia’ and ‘Sorbonne’ was up to 60%. In conclusion, this study provides the theoretical basis and technical support for improving the resistance and reproductive ability of Oriental lily and the molecular breeding of lily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号