首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The significance of cancer stem cells (CSCs) in initiation and progression of colon cancer (CC) has been established. In this study, we investigated the utility of measuring mRNA expression levels of CSC markers EpCAM, LGR5 and LGR4 for predicting survival outcome in surgically treated CC patients. Expression levels were determined in 5 CC cell lines, 66 primary CC tumors and 382 regional lymph nodes of 121 CC patients. Prognostic relevance was determined using Kaplan-Meier survival and Cox regression analyses. CC patients with lymph nodes expressing high levels of EpCAM, LGR5 or LGR4 (higher than a clinical cutoff of 0.07, 0.06 and 2.558 mRNA copies/18S rRNA unit, respectively) had a decreased mean survival time of 32 months for EpCAM and 42 months for both LGR5 and LGR4 at a 12-year follow-up (p = 0.022, p = 0.005 and p = 0.011, respectively). Additional patients at risk for recurrence were detected when LGR5 was combined with the biomarkers CXCL17 or CEA plus CXCL16. In conclusion, the study underscores LGR5 as a particularly useful prognostic biomarker and illustrates the strength of combining biomarkers detecting different subpopulations of cancer cells and/or cells in the tumor microenvironment for predicting recurrence.  相似文献   

2.
The orphan GPR87 has recently been matched with its ligand LPA, which is a lipid mediator with multiple physiological functions, including cancer cell proliferation. This study aimed to clarify the role of GPR87 in urothelial carcinoma of the bladder. GPR87 expression was assessed in seven human bladder cancer cell lines. A replication-deficient recombinant adenoviral vector expressing shRNA targeting GPR87 (Ad-shGPR87), was constructed. Gene silencing was carried out using Ad-shGPR87. Immunohistochemical analysis was performed for transurethral resection of bladder tumor samples from 71 patients with non-muscle-invasive bladder cancer. We observed GPR87 expression in five of the seven cell lines, and silencing GPR87 gene expression significantly reduced cell viability. GPR87 expression was positive in 38 (54%) of 71 tumors. Ki-67 index was associated with positive GPR87 staining status (p < 0.0001). Patients with GPR87-positive tumors had shorter intravesical recurrence-free survival than those with GPR87-negative tumors (p = 0.010). Multivariate analysis revealed that GPR87 staining status was an independent prognostic parameter for intravesical recurrence (p = 0.041). Progression from non-muscle-invasive to muscle-invasive tumor was more frequently observed in patients with GPR87-positive tumors, although this trend did not reach statistical significance (p = 0.056). These results warrant further prospective studies to clarify the role of GPR87 expression in intravesical recurrence and progression in bladder cancer.  相似文献   

3.
The expression of CXC motif chemokine 17 (CXCL17) and its reported membrane receptor G-protein-coupled receptor 35 (GPR35) in different gastric pathological lesions and their clinical implications are largely unknown. In this study, a total of 860 pathological sections were immune-stained with either anti-CXCL17 or anti-GPR35 antibodies. Their expression was scored within the area of the normal gastric gland of non-atrophic gastritis (NAG-NOR), intestinal metaplasia of atrophic gastritis (AG-IM), IM adjacent to GC (GC-IM), and GC tissue. The clinical significance and potential function of CXCL17 and GPR35 were explored using multiple methods. Our results suggested that CXCL17 expression was gradually upregulated during the pathological progress of gastric diseases (NAG-NOR < AG-IM < GC-IM), but significantly downregulated when GC occurred. GPR35 had a similar expression pattern but its expression in GC remained abundant. High CXCL17 expression in GC was associated with less malignant behavior and was an independent biomarker of favorable prognosis. Overexpressing CXCL17 in HGC27 cells significantly upregulated CCL20 expression. TCGA analysis identified that CXCL17 was negatively correlated with some cancer-promoting pathways and involved in inflammatory activities. CTRP analysis revealed that gastric cell lines expressing less CXCL17 and were more sensitive to the CXCR2 inhibitor SB-225002.  相似文献   

4.
5.
G protein-coupled receptor 55 (GPR55) probably plays a role in innate immunity and tumor immunosurveillance through its effect on immune cells, such as T cells and NK cells. In this study, the prognostic value of GPR55 in colon cancer (CC) was investigated. mRNA expression levels of GPR55 were determined in 382 regional lymph nodes of 121 CC patients with 12 years observation time after curative surgery. The same clinical material had previously been analyzed for expression levels of CEA, CXCL16, CXCL17, GPR35 V2/3 and LGR5 mRNAs. Clinical cutoffs of 0.1365 copies/18S rRNA unit for GPR55 and 0.1481 for the GPR55/CEA ratio were applied to differentiate between the high- and low-GPR55 expression groups. Kaplan–Meier survival analysis and Cox regression risk analysis were used to determine prognostic value. Improved discrimination between the two groups was achieved by combining GPR55 with CEA, CXCL16 or CXCL17 compared with GPR55 alone. The best result was obtained using the GPR55/CEA ratio, with an increased mean survival time of 14 and 33 months at 5 and 12 years observation time, respectively (p = 0.0003 and p = 0.003) for the high-GPR55/CEA group. The explanation for the observed improvement is most likely that GPR55 is a marker for T cells and B cells in lymph nodes, whereas CEA, CXCL16 and CXCL17, are markers for tumor cells of epithelial origin.  相似文献   

6.
G protein-coupled receptor 87 (GPR87) is a newly deorphanized member of the cell surface molecule G protein-coupled receptor family. GPR signaling was shown to play a role in promotion of cell growth and survival, metastasis, and drug resistance. The overexpression of GPR87 has also been reported in many malignant tumors including bladder cancer. The aim of the present study is to examine the effect of silencing GPR87 expression with a replication-deficient recombinant adenoviral vector expressing short hairpin RNA targeting GPR87 (Ad-shGPR87) and to explore the underlying molecular mechanisms in bladder cancer cells. Six GPR87-expressing human bladder cancer cells, HT1197, HT1376, J82, RT112, TCCSUP and UMUC3, were used. Infection with Ad-shGPR87 effectively downregulated the GPR87 expression, and significantly reduced the percentage of viable cells in 4 of 6 cell lines as detected by an MTT assay. Significant inhibition on cell proliferation with Ad-shGPR87 was observed in the wild-type p53 bladder cancer cell lines (HT1197, RT112, TCCSUP and UMUC3), but not in the mutant p53 cells (HT1376 and J82). As represented by a wild-type p53 RT112 cell, Ad-shGPR87 infection significantly enhanced p53 and p21 expression and caused caspase-dependent apoptosis. Furthermore, the treatment with Ad-shGPR87 exerted a significant antitumor effect against the GPR87-expressing RT112 xenografts. GPR87 appeared to be a promising target for gene therapy, and Ad-shGPR87 had strong antitumor effects, specifically anti-proliferative and pro-apoptotic effects, against GPR87-expressing human bladder cancer cells.  相似文献   

7.
Titanium containing silica analog of ZSM-48 (TS-48) has been synthesized by a new method using hexamethonium hydroxide as a template. Titanium incorporation in the framework was evidenced from unit cell volume expansion, framework IR spectra and diffuse reflectance UV-Vis spectra.  相似文献   

8.
GPR55 is a GPCR of the non-CB1/CB2 cannabinoid receptor family, which is activated by lysophosphatidylinositol (LPI) and stimulates the proliferation of cancer cells. Anandamide, a bioactive lipid endocannabinoid, acts as a biased agonist of GPR55 and induces cancer cell death, but is unstable and psychoactive. We hypothesized that other endocannabinoids and structurally similar compounds, which are more hydrolytically stable, could also induce cancer cell death via GPR55 activation. We chemically synthesized and tested a set of fatty acid amides and esters for cell death induction via GPR55 activation. The most active compounds appeared to be N-acyl dopamines, especially N-docosahexaenoyl dopamine (DHA-DA). Using a panel of cancer cell lines and a set of receptor and intracellular signal transduction machinery inhibitors together with cell viability, Ca2+, NO, ROS (reactive oxygen species) and gene expression measurement, we showed for the first time that for these compounds, the mechanism of cell death induction differed from that published for anandamide and included neuronal nitric oxide synthase (nNOS) overstimulation with concomitant oxidative stress induction. The combination of DHA-DA with LPI, which normally stimulates cancer proliferation and is increased in cancer setting, had an increased cytotoxicity for the cancer cells indicating a therapeutic potential.  相似文献   

9.
Ovarian granulosa cell tumors (GCTs) are thought to arise from cells of the ovarian follicle and comprise a rare entity of ovarian masses. We recently identified the G-protein-coupled estrogen receptor (GPER/GPR30) to be present in granulosa cells, to be regulated by gonadotropins in epithelial ovarian cancer and to be differentially expressed throughout folliculogenesis. Thus, supposing a possible role of GPER in GCTs, this study aimed to analyze GPER in GCTs. GPER immunoreactivity in GCTs (n = 26; n (primary diagnosis) = 15, n (recurrence) = 11) was studied and correlated with the main clinicopathological variables. Positive GPER staining was identified in 53.8% (14/26) of GCTs and there was no significant relation of GPER with tumor size or lymph node status. Those cases presenting with strong GPER intensity at primary diagnosis showed a significant reduced overall survival (p = 0.002). Due to the fact that GPER is regulated by estrogens, as well as gonadotropins, GPER may also be affected by endocrine therapies applied to GCT patients. Moreover, with our data supposing GPER to be associated with GCT prognosis, GPER might be considered as a possible confounder when assessing the efficacy of hormone-based therapeutic approaches in GCTs.  相似文献   

10.
GPR39, a member of the ghrelin family of G protein-coupled receptors, is zinc-responsive and contributes to the regulation of diverse neurovascular and neurologic functions. Accumulating evidence suggests a role as a homeostatic regulator of neuronal excitability, vascular tone, and the immune response. We review GPR39 structure, function, and signaling, including constitutive activity and biased signaling, and summarize its expression pattern in the central nervous system. We further discuss its recognized role in neurovascular, neurological, and neuropsychiatric disorders.  相似文献   

11.
The G-protein coupled receptor GPR39 is abundantly expressed in various tissues and can be activated by changes in extracellular Zn2+ in physiological concentrations. Previously, genetically modified rodent models have been able to shed some light on the physiological functions of GPR39, and more recently the utilization of novel synthetic agonists has led to the unraveling of several new functions in the variety of tissues GPR39 is expressed. Indeed, GPR39 seems to be involved in many important metabolic and endocrine functions, but also to play a part in inflammation, cardiovascular diseases, saliva secretion, bone formation, male fertility, addictive and depression disorders and cancer. These new discoveries offer opportunities for the development of novel therapeutic approaches against many diseases where efficient therapeutics are still lacking. This review focuses on Zn2+ as an endogenous ligand as well as on the novel synthetic agonists of GPR39, placing special emphasis on the recently discovered physiological functions and discusses their pharmacological potential.  相似文献   

12.
Cancer cachexia (CC) is a multifactorial syndrome in patients with advanced cancer characterized by weight loss via skeletal-muscle and adipose-tissue atrophy, catabolic activity, and systemic inflammation. CC is correlated with functional impairment, reduced therapeutic responsiveness, and poor prognosis, and is a major cause of death in cancer patients. In colorectal cancer (CRC), cachexia affects around 50–61% of patients, but remains overlooked, understudied, and uncured. The mechanisms driving CC are not fully understood but are related, at least in part, to the local and systemic immune response to the tumor. Accumulating evidence demonstrates a significant role of tumor microenvironment (TME) cells (e.g., macrophages, neutrophils, and fibroblasts) in both cancer progression and tumor-induced cachexia, through the production of multiple procachectic factors. The most important role in CRC-associated cachexia is played by pro-inflammatory cytokines, including the tumor necrosis factor α (TNFα), originally known as cachectin, Interleukin (IL)-1, IL-6, and certain chemokines (e.g., IL-8). Heterogeneous CRC cells themselves also produce numerous cytokines (including chemokines), as well as novel factors called “cachexokines”. The tumor microenvironment (TME) contributes to systemic inflammation and increased oxidative stress and fibrosis. This review summarizes the current knowledge on the role of TME cellular components in CRC-associated cachexia, as well as discusses the potential role of selected mediators secreted by colorectal cancer cells in cooperation with tumor-associated immune and non-immune cells of tumor microenvironment in inducing or potentiating cancer cachexia. This knowledge serves to aid the understanding of the mechanisms of this process, as well as prevent its consequences.  相似文献   

13.
A series of novel 1-(4-substitutedbenzoyl)-4-(4-chlorobenzhydryl)piperazine derivatives 5a-g was designed by a nucleophilic substitution reaction of 1-(4-chlorobenzhydryl)piperazine with various benzoyl chlorides and characterized by elemental analyses, IR and (1)H nuclear magnetic resonance spectra. Cytotoxicity of the compounds was demonstrated on cancer cell lines from liver (HUH7, FOCUS, MAHLAVU, HEPG2, HEP3B), breast (MCF7, BT20, T47D, CAMA-1), colon (HCT-116), gastric (KATO-3) and endometrial (MFE-296) cancer cell lines. Time-dependent cytotoxicity analysis of compound 5a indicated the long-term in situ stability of this compound. All compounds showed significant cell growth inhibitory activity on the selected cancer cell lines.  相似文献   

14.
miRNAs are non-coding RNA sequences of approximately 22 nucleotides that interact with genes by inhibiting their translation through binding to their 3′ or 5′ UTR regions. Following their discovery, the role they play in the development of various pathologies, particularly cancer, has been studied. In this context, miR-7 is described as an important factor in the development of cancer because of its role as a tumor suppressor, regulating a large number of genes involved in the development and progression of cancer. Recent data support the function of miR-7 as a prognostic biomarker in cancer, and miR-7 has been proposed as a strategy in cancer therapy. In this work, the role of miR-7 in various types of cancer is reviewed, illustrating its regulation, direct targets, and effects, as well as its possible relationship to the clinical outcome of cancer patients.  相似文献   

15.
Claudin 4 is a cellular adhesion molecule that is frequently overexpressed in ovarian cancer and other epithelial cancers. In this study, we sought to determine whether the expression of claudin 4 is associated with outcome in ovarian cancer patients and may be involved in tumor progression. We examined claudin 4 expression in ovarian cancer tissues and cell lines, as well as by immunohistochemical staining of tissue microarrays (TMAs; n = 500), spheroids present in patients' ascites, and spheroids formed in vitro. Claudin 4 was expressed in nearly 70% of the ovarian cancer tissues examined and was differentially expressed across ovarian cancer subtypes, with the lowest expression in clear cell subtype. No association was found between claudin 4 expression and disease-specific survival in any subtype. Claudin 4 expression was also observed in multicellular spheroids obtained from patients' ascites. Using an in vitro spheroid formation assay, we found that NIH:OVCAR5 cells treated with shRNA against claudin 4 required a longer time to form compact spheroids compared to control NIH:OVCAR5 cells that expressed high levels of claudin 4. The inability of the NIH:OVCAR5 cells treated with claudin 4 shRNA to form compact spheroids was verified by FITC-dextran exclusion. These results demonstrate a role for claudin 4 and tight junctions in spheroid formation and integrity.  相似文献   

16.
17.
In this paper, we wish to report the synthesis and characterization of poly(4-vinylpyridine) supported on MCM-48 by in situ polymerization of 4-vinylpyridine in the presence of MCM-48. This catalyst was effectively employed as a novel heterogeneous basic catalyst for the one-pot synthesis of 4H-chromenes in aqueous medium. This catalyst was easily prepared, and showed considerable level of reusability.  相似文献   

18.
Cancer is a deadly disease worldwide, with an anticipated 19.3 million new cases and 10.0 million deaths occurring in 2020 according to GLOBOCAN 2020. It is well established that carcinogenesis and cancer development are strongly linked to genetic changes and post-translational modifications (PTMs). An important PTM process, ubiquitination, regulates every aspect of cellular activity, and the crucial enzymes in the ubiquitination process are E3 ubiquitin ligases (E3s) that affect substrate specificity and must therefore be carefully regulated. A surfeit of studies suggests that, among the E3 ubiquitin ligases, neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4)/NEDD4-like E3 ligases show key functions in cellular processes by controlling subsequent protein degradation and substrate ubiquitination. In addition, it was demonstrated that NEDD4 mainly acts as an oncogene in various cancers, but also plays a tumor-suppressive role in some cancers. In this review, to comprehend the proper function of NEDD4 in cancer development, we summarize its function, both its tumor-suppressive and oncogenic role, in multiple types of malignancies. Moreover, we briefly explain the role of NEDD4 in carcinogenesis and progression, including cell survival, cell proliferation, autophagy, cell migration, invasion, metastasis, epithelial-mesenchymal transition (EMT), chemoresistance, and multiple signaling pathways. In addition, we briefly explain the significance of NEDD4 as a possible target for cancer treatment. Therefore, we conclude that targeting NEDD4 as a therapeutic method for treating human tumors could be a practical possibility.  相似文献   

19.
Inflammation is known to cause pain, and pain is of one of the cardinal signs of inflammation. Mounting evidence suggests that acute inflammation also resolves pain through specialized pro-resolving mediators (SPMs) and macrophage signaling. GPR37 is expressed by neurons and oligodendrocytes in the brain and has been implicated in multiple disorders, such as demyelination, Parkinson’s disease, stroke, and cancer. Recent studies have demonstrated that GPR37 is expressed by macrophages and confers protection against infection by bacteria and parasites. Furthermore, GPR37 promotes the resolution of inflammatory pain and infection-induced pain, as the duration of pain after tissue injury and infection is prolonged in mice lacking Gpr37. Mechanistically, activation of GPR37 enhances macrophage phagocytosis, and Gpr37-deficient macrophages exhibit dysregulations of pro-inflammatory and anti-inflammatory cytokines, switching from M2- to M1-like phenotypes. We also discuss novel ligands of GPR37, including neuroprotectin D1 (NPD1), a SPM derived from docosahexaenoic acid (DHA), and bone-derived hormone osteocalcin (OCN), which can suppress oligodendrocyte differentiation and myelination. NPD1 stimulates macrophage phagocytosis via GPR37 and exhibits potent analgesic actions in various animal models of inflammatory and neuropathic pain. Targeting GPR37 may lead to novel therapeutics for treating inflammation, infection, pain, and neurological diseases.  相似文献   

20.
CXCR4在乳腺癌中的表达及乌斯他丁对其表达的影响   总被引:1,自引:1,他引:0  
目的探讨趋化因子受体CXCR4在乳腺癌中的表达及其与肿瘤转移的相关性,以及乌斯他丁(UTI)对其表达的影响。方法采用流式细胞术和RT-PCR法检测22例乳腺癌患者的癌组织、癌旁组织、正常组织以及乳腺癌细胞MDA-MB-231中CXCR4在蛋白和mRNA水平的表达情况,以及UTI对MDA-MB-231细胞CXCR4表达的影响。结果在乳腺癌组织和MDA-MB-231细胞中,CXCR4在蛋白和mRNA水平的表达均显著高于癌旁组织和正常组织,且CXCR4的表达与乳腺癌的转移密切相关;UTI能下调CXCR4的表达,经UTI作用后,MDA-MB-231细胞的趋化活性降低。结论CXCR4在乳腺癌中高表达,在乳腺癌的转移中起重要作用,下调乳腺癌细胞CXCR4的表达水平可减少或抑制其转移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号