首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, a novel discontinuous control strategy for robust stabilization of a class of uncertain multivariable linear time‐delay systems with delays in both the state and control variables is proposed. Two predictors are first designed to compensate the delay effect in the control input, and then an integral sliding mode control technique is applied to compensate partially the effect of the perturbation term. Finally, a nominal delay‐free component of the full control input is designed to stabilize the sliding mode dynamics. Conditions for the stability of the closed‐loop perturbed system are then derived. The proposed framework is then extended to the class of systems modeled in regular form. Some examples illustrate the feasibility of the proposed scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
This paper is concerned with the problem of stability of time‐delay systems. A new type of augmented Lyapunov functional is proposed. By introducing some free‐weighting matrices and using the parameterized model transformation method, a new delay‐dependent stability condition is obtained in terms of a linear matrix inequality (LMI). Numerical examples are given to illustrate the effectiveness of the proposed methods. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

3.
This paper presents an integral sliding mode technique robustifying the optimal controller for linear stochastic systems with input and observation delays, which is based on integral sliding mode compen‐sation of disturbances. The general principles of the integral sliding mode compensator design are modified to yield the basic control algorithm oriented to time‐delay systems, which is then applied to robustify the optimal controller. As a result, two integral sliding mode control compensators are designed to suppress disturbances in state and observation equations, respectively, from the initial time moment. Moreover, it is shown that if certain matching conditions hold, the designed compensator in the state equation can simultaneously suppress observation disturbances, as well as the designed compensator in the observation equation can simultaneously suppress state disturbances. The obtained robust control algorithm is verified by simulations in the illustrative example, where the compensator in the observation equation provides simultaneous suppression of state and observation disturbances. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
This paper is concerned with delay‐dependent stability for linear systems with time‐varying delays. By decomposing the delay interval into multiple equidistant subintervals, on which different Lyapunov functionals are chosen, and new Lyapunov‐Krasvskii functionals are then constructed. Employing these new Lyapunov‐Krasvskii functionals, some new delay‐dependent stability criteria are established. The numerical examples show that the obtained results are less conservative than some existing ones in the literature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This paper is concerned with the delay‐dependent stability and robust stability for uncertain systems with time‐varying delay. Through constructing an appropriate type of Lyapunov‐Krasovskii functional and proving its positive definiteness, using slack matrices and a convex combination condition, the delay‐dependent stability criteria, which are less conservative, are derived in terms of linear matrix inequalities. Numerical examples are also given to illustrate the improvement on the conservatism of the delay bound over some existing results. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

6.
This paper presents a new insight into the delay‐dependent stability for time‐delay systems. Because of the key observation that the positive definiteness of a chosen Lyapunov–Krasovskii functional does not necessarily require all the involved symmetric matrices in the Lyapunov–Krasovskii functional to be positive definite, an improved delay‐dependent asymptotic stability condition is presented in terms of a set of LMIs. This fact has been overlooked in the development of previous stability results. The importance of the present method is that a vast number of existing delay‐dependent results on analysis and synthesis of time‐delay systems derived by the Lyapunov–Krasovskii stability theorem can be improved by using this observation without introducing additional variables. The reduction of conservatism of the proposed result is both theoretically and numerically demonstrated. It is believed that the proposed method provides a new direction to improve delay‐dependent results on time‐delay systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This paper concerns delay‐range‐dependent robust stability and stabilization for time‐delay system with linear fractional form uncertainty. The time delay is assumed to be a time‐varying continuous function belonging to a given range. On the basis of a novel Lyapunov–Krasovskii functional, which includes the information of the range, delay‐range‐dependent stability criteria are established in terms of linear matrix inequality. It is shown that the new criteria can provide less conservative results than some existing ones. Moreover, the stability criteria are also used to design the stabilizing state‐feedback controllers. Numerical examples are given to demonstrate the applicability of the proposed approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
在实际系统中,系统参数与结构随机变化、未知外界干扰、传感器时滞等现象时有发生并严重影响了系统的稳定运行.为了解决这一问题,本文提出计及随机传感器时滞的一类不确定半Markov跳变系统鲁棒滑模控制方法,其中系统的传感器时滞通过使用Bernoulli随机分布进行描述.考虑系统状态信息不可测量条件下,文章设计模态依赖Luenberger观测器去估计半Markov跳变系统的运行状态.然后,本文构造一个积分滑模面并借助随机Lyapunov理论,提出两种半Markov跳变系统的随机稳定性分析方法.进而,文章提出基于观测器的滑模控制方法使得系统状态能够在有限时间内到达滑模面上以及滑模动态在H性能指标γ下是随机稳定的.最后,通过一种基于他励直流电动机模型的数值仿真例子验证所设计的滑模控制方法的有效性与正确性.  相似文献   

9.
In this paper, a robust stabilization problem for a class of linear time‐varying delay systems with disturbances is studied using sliding mode techniques. Both matched and mismatched disturbances, involving time‐varying delay, are considered. The disturbances are nonlinear and have nonlinear bounds which are employed for the control design. A sliding surface is designed and the stability of the corresponding sliding motion is analysed based on the Razumikhin Theorem. Then a static output feedback sliding mode control with time delay is synthesized to drive the system to the sliding surface in finite time. Conservatism is reduced by using features of sliding mode control and systems structure. Simulation results show the effectiveness of the proposed approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a new method is proposed for stability analysis and synthesis of Takagi–Sugeno (T–S) fuzzy systems with time‐varying delay. Based on a new Lyapunov–Krasovskii functional (LKF), some less conservative delay‐dependent stability criteria are established. In the derivation process, some additional useful terms, ignored in previous methods, are considered and new free‐weighting matrices are introduced to estimate the upper bound of the derivative of LKF for T–S fuzzy systems with time‐varying delay. The proposed stability criterion and stabilization condition are represented in terms of linear matrix inequalities. Numerical examples are given to demonstrate the effectiveness and the benefits of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This paper deals with delay‐dependent H control for discrete‐time systems with time‐varying delay. A new finite sum inequality is first established to derive a delay‐dependent condition, under which the resulting closed‐loop system via a state feedback is asymptotically stable with a prescribed H noise attenuation level. Then, an iterative algorithm involving convex optimization is proposed to obtain a suboptimal H controller. Finally, two numerical examples are given to show the effectiveness of the proposed method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
This paper is concerned with sliding mode control for uncertain stochastic systems with time-varying delay. Both time-varying parameter uncertainties and an unknown nonlinear function may appear in the controlled system. An integral sliding surface is first constructed. Then, by means of linear matrix inequalities (LMIs), a sufficient condition is derived to guarantee the global stochastic stability of the stochastic dynamics in the specified switching surface for all admissible uncertainties. The synthesized sliding mode controller guarantees the reachability of the specified sliding surface. Finally, a simulation example is presented to illustrate the proposed method.  相似文献   

13.
Stability robustness of systems with uncertain time delays is considered. A new delay‐dependent state‐space stability criterion is formulated in the form of an easily checked LMI condition. Two applications of the main result are presented, one with only time‐delay uncertainty and one with both delay and parametric uncertainty. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
The robust stochastic stability, stabilization and H control for mode‐dependent time‐delay discrete Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a standard linear system, and delay‐dependent linear matrix inequalities (LMIs) conditions for the mode‐dependent time‐delay discrete Markovian jump singular systems to be regular, causal and stochastically stable, and stochastically stable with γ‐disturbance attenuation are obtained, respectively. With these conditions, robust stabilization problem and robust H control problem are solved, and the LMIs sufficient conditions are obtained. A numerical example illustrates the effectiveness of the method given in the paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
This paper addresses the controller synthesis problem of linear time‐delay systems subjected to saturating control. Delay‐dependent regional stabilization criteria are derived based on Lyapunov–Krasovskii approach by using both the polytopic or dead‐zone representation of the saturation function. The main contribution of the paper lies in developing less conservative convex criterion in terms of LMIs to obtain superior results. On the basis of the derived stabilization criterion, an optimization problem is defined to compute the stabilizing state feedback gains with an aim to maximize the stabilizing region while guaranteeing the asymptotic stability of the closed‐loop system. Considering three numerical examples, an assessment of the polytopic and dead‐zone nonlinearity approaches is made. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A new sliding mode control (SMC) approach, output variables only, single phase only and chattering phenomenon free, is presented for a class of mismatched uncertain large-scale systems. For a new multitask SMC, it is not required that the system states are available. Moreover, the sliding function in this study just depends on output variables. Using an exponential type sliding surface, the system states are always in the sliding mode at the beginning time t = 0. Using a newly appropriate linear matrix inequality stability conditions by the Lyapunov method are derived such that each subsystem in the new sliding mode is completely invariant to matched uncertainties. As a result, robustness of the mismatched uncertain large-scale systems can be assured throughout an entire response of the system starting from the initial time t = 0. In every subsystem, a scheme of decentralised control using only output states is proposed. In addition, a continuous controller is finally designed for chattering removal. Finally, a numerical example is used to demonstrate the efficacy of the proposed method.  相似文献   

17.
18.
This paper investigates the problem of the absolute stability of Lur'e systems with a time‐varying delay. By considering the relationships among the time‐varying delay, its upper bound, and the difference between them, less conservative delay‐dependent stability criteria are obtained and formulated in terms of linear matrix inequalities, without ignoring any useful terms in the derivative of a Lyapunov–Krasovskii functional. Numerical example shows that the results obtained in this paper are better than the previous results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with the problem of robust stability analysis for uncertain neutral systems. In terms of a linear matrix inequality (LMI), an improved delay‐dependent asymptotic stability criterion is developed without using bounding techniques on the related cross product terms. Based on this, a new delay‐dependent LMI condition for robust stability is obtained. Numerical examples are provided to show that the proposed results significantly improve the allowed upper bounds of the delay size over some existing ones in the literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The problem of delay‐dependent robust stabilization for uncertain singular discrete‐time systems with Markovian jumping parameters and time‐varying delay is investigated. In terms of free‐weighting‐matrix approach and linear matrix inequalities, a delay‐dependent condition is presented to ensure a singular discrete‐time system to be regular, causal and stochastically stable based on which the stability analysis and robust stabilization problem are studied. An explicit expression for the desired state‐feedback controller is also given. Some numerical examples are provided to demonstrate the effectiveness of the proposed approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号