共查询到20条相似文献,搜索用时 0 毫秒
1.
Jian‐ning Li Hongye Su Yibo Zhang Zheng‐guang Wu Jian Chu 《Asian journal of control》2013,15(1):260-269
The problem of chattering free sliding mode control for a class of uncertain discrete singular systems with state delay is investigated in this paper. As a component of the solution, a new least squares support vector machine (LS‐SVM) reaching law is proposed. In terms of linear matrix inequalities, a delay‐dependent condition for sliding mode dynamics to be regular, causal, and asymptotically stable is established, and the chattering problem that appears in traditional variable structure systems is eliminated. Numerical examples are provided to demonstrate the applicability of the proposed methods. 相似文献
2.
This paper deals with the problem of rubost stability for the uncertain neutral system with interval time varying discrete delay. By defining an appropriate Lyapunov‐Krasovskii functional and by employing the developed free weight matrices technique, several less conservative sufficient conditions are derived in term of the linear matrix inequalities. Numerical examples are given to demonstrate the effectiveness and the feasibility of the proposed method. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society 相似文献
3.
The paper is devoted to investigating sliding mode control for a class of nonlinear uncertain stochastic systems with input nonlinearity and Markovian switching. A nonfragile observer subjected to the transition rates of the modes is designed. By some specified matrices, the connections among the designed sliding surfaces corresponding to every mode are established. The state estimation‐based sliding mode control law is derived to guarantee the reachability of the sliding surface in finite time interval. The sufficient conditions on asymptotically stochastic stability of the error system and sliding mode dynamics with a given disturbance attenuation level are derived in terms of linear matrix inequalities. Finally, an example is provided to illustrate the efficiency of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
4.
The problem of delay‐dependent robust stabilization for uncertain singular time‐delay systems is investigated in this paper. The parameter uncertainty is assumed to be norm‐bounded and possibly time‐varying, while the time delay considered here is assumed to be constant but unknown. A delay‐dependent condition is presented for a singular time‐delay system to be regular, impulse free, and stable, based on which robust stability analysis and the robust stabilization problem are studied. An explicit expression for the desired state‐feedback control law is also given. The obtained results are formulated in terms of linear matrix inequalities (LMIs), which involve no decomposition of the system matrices. Some numerical examples are given to show the efficiency of the theoretical conditions. 相似文献
5.
This paper is concerned with the delay‐dependent stability and robust stability for uncertain systems with time‐varying delay. Through constructing an appropriate type of Lyapunov‐Krasovskii functional and proving its positive definiteness, using slack matrices and a convex combination condition, the delay‐dependent stability criteria, which are less conservative, are derived in terms of linear matrix inequalities. Numerical examples are also given to illustrate the improvement on the conservatism of the delay bound over some existing results. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society 相似文献
6.
This paper provides improved delay‐dependent conditions for the robust stability and robust stabilization of discrete time‐delay systems with norm‐bounded parameter uncertainties. It is theoretically established that the proposed conditions are less conservative than those discussed in the literature. The new approach proposed in this paper in a derivation of delay‐dependent conditions and involves the use of neither model transformation nor bounding techniques for some cross terms. A numerical example is provided to demonstrate the reduced conservatism of the proposed conditions. 相似文献
7.
对于具有多个独立传感器与执行器的多输入多输出网络控制系统,在具有多重时滞的情况下,建立一类网络控制系统的连续时间模型。通过构造一个新的李雅普诺夫函数,给出一个具有较低保守性的稳定性判据。基于该稳定性判据,给出输出反馈控制器的设计方法,数值仿真结果表明了该方法的有效性。 相似文献
8.
Jian-Jiang Yu 《国际自动化与计算杂志》2011,8(1):23-28
This paper concerns the robust stability analysis of uncertain systems with time delays as random variables drawn from some probability distribution. The delay-distribution-dependent criteria for the exponential stability of the original system in mean square sense are achieved by Lyapunov functional method and the linear matrix inequality (LMI) technique. The proposed approach involves neither free weighting matrices nor any model transformation, and it shows that the new criteria can provide less conservative results than some existing ones. Numerical examples are given to demonstrate the effectiveness and the benefits of the proposed method. 相似文献
9.
The problem of robust stability analysis for uncertain discrete singular time‐delay systems is investigated in this paper. By decomposing the nominal system into slow and fast subsystems, a linear matrix inequality (LMI) condition is proposed for a discrete singular time‐delay system to be regular, causal and stable. Based on this, an LMI criterion is obtained for robust stability of an uncertain discrete singular time‐delay system. Two numerical examples are provided to demonstrate the feasibility of the proposed approach. 相似文献
10.
This paper concerns delay‐range‐dependent robust stability and stabilization for time‐delay system with linear fractional form uncertainty. The time delay is assumed to be a time‐varying continuous function belonging to a given range. On the basis of a novel Lyapunov–Krasovskii functional, which includes the information of the range, delay‐range‐dependent stability criteria are established in terms of linear matrix inequality. It is shown that the new criteria can provide less conservative results than some existing ones. Moreover, the stability criteria are also used to design the stabilizing state‐feedback controllers. Numerical examples are given to demonstrate the applicability of the proposed approach. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
11.
12.
Stability robustness of systems with uncertain time delays is considered. A new delay‐dependent state‐space stability criterion is formulated in the form of an easily checked LMI condition. Two applications of the main result are presented, one with only time‐delay uncertainty and one with both delay and parametric uncertainty. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
13.
14.
研究了基于脉冲响应模型的动态矩阵预测控制(DMC)算法,针对多输入、多输出(MIMO)系统脉冲响应模型的特点,利用脉冲响应系数误差矩阵范数平方和定义预测模型的模型误差,以线性矩阵不等式(LMI)的形式提出了DMC闭环鲁棒稳定充要条件,将DMC算法闭环稳定问题转换为一类线性矩阵不等式的可解问题.并且研究了模型误差与闭环系统稳定性之间的关系,给出了保证系统稳定条件下模型误差界的求取方法,通过求解一个线性矩阵不等式约束的凸优化问题得到保证闭环系统稳定的误差界.最后,利用算例对本文方法的有效性进行了验证. 相似文献
15.
16.
This paper presents an approach to design robust non‐fragile H ∞ ∕ L2 ? L ∞ static output feedback controller, considering actuator time‐delay and the controller gain variations, and it is applied to design vehicle active suspension. According to suspension design requirements, the H ∞ and L2 ? L ∞ norms are used, respectively, to reflect ride comfort and time‐domain hard constraints. By employing a delay‐dependent Lyapunov function, existence conditions of delay‐dependent robust non‐fragile static output feedback H ∞ controller and L2 ? L ∞ controller are derived, respectively, in terms of the feasibility of bilinear matrix inequalities. Then, a new procedure based on LMI optimization and a hybrid algorithm of the particle swarm optimization and differential evolution is used to solve an optimization problem with bilinear matrix inequality constraints. Simulation results show that the designed active suspension system still can guarantee their own performance in spite of the existence of the model uncertainties, the actuator time‐delay and the controller gain variations. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
17.
18.
In this article, modelling and robust stability of networked control systems (NCS) are discussed. Considering the existence of packet reordering and network-induced delay, a new mathematical model of NCS whose network-induced delay is longer than one sampling period is obtained, which can fully describe packet reordering and effectively eliminate the impact of packet reordering on the performance of NCS such that the newest control input can be executed by the actuator. Based on this model, the time-varying NCS is converted into an uncertain discrete linear system with multi-step delay in terms of matrix theory. Furthermore, a sufficient condition for robust stability of NCS is presented. Linear matrix inequality approach has been employed to solve the controller design problems. Numerical examples are compared with previous schemes to demonstrate the effectiveness of the proposed method. 相似文献
19.
The robust stability and robust stabilization for time‐delay discrete singular systems with parameter uncertainties is discussed. A delay‐dependent linear matrix inequality (LMI) condition for the time‐delay discrete systems to be nonsingular and stable is given. Based on this condition and the restricted system equivalent transformation, the delay‐dependent LMI condition is proposed for the time‐delay discrete singular systems to be admissible. With this condition, the problems of robust stability and robust stabilization are solved, and the delay‐dependent LMI conditions are obtained. Numerical examples illustrate the effectiveness of the method given in the paper. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society 相似文献
20.
In this paper a novel sliding‐mode control algorithm, based on the differential geometry state‐co‐ordinates transformation method, is proposed to control motor torque directly. Non‐linear feedback linearization theory is employed to decouple the control of rotor flux magnitude and motor torque. The advantages of this method are: (1) The rotor flux and the generated torque can be accurately controlled. (2) Robustness with respect to matched and mismatched uncertainties is obtained. Additionally, a varying continuous control term is proposed. As a result, chattering is eliminated without sacrificing robustness and precision. The control strategy is based on all motor states being available. In practice the rotor fluxes are not usually measurable, and a sliding‐mode observer is derived to estimate the rotor flux. The observer is designed to possess invariant dynamic modes which can be assigned independently to achieve the desired performance. Furthermore, it can be shown that the observer is robust against model uncertainties and measurement noise. Simulation and practical results are presented to confirm the characteristics of the proposed control law and rotor flux observer. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献