首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wood/plastic composites (WPCs) can absorb moisture in a humid environment due to the hydrophilic nature of the wood in the composites, making products susceptible to microbial growth and loss of mechanical properties. Co‐extruding a poly(vinyl chloride) (PVC)‐rich cap layer on a WPC significantly reduces the moisture uptake rate, increases the flexural strength but, most importantly, decreases the flexural modulus compared to uncapped WPCs. A two‐level factorial design was used to develop regression models evaluating the statistical effects of material compositions and a processing condition on the flexural properties of co‐extruded rigid PVC/wood flour composites with the ultimate goal of producing co‐extruded composites with better flexural properties than uncapped WPCs. Material composition variables included wood flour content in the core layer and carbon nanotube (CNT) content in the cap layer of the co‐extruded composites, with the processing temperature profile for the core layer as the only processing condition variable. Fusion tests were carried out to understand the effects of the material compositions and processing condition on the flexural properties. Regression models indicated all main effects and two powerful interaction effects (processing temperature/wood flour content and wood flour content/CNT content interactions) as statistically significant. Factors leading to a fast fusion of the PVC/wood flour composites in the core layer, i.e. low wood flour content and high processing temperature, were effective material composition and processing condition parameters for improving the flexural properties of co‐extruded composites. Reinforcing the cap layer with CNTs also produced a significant improvement in the flexural properties of the co‐extruded composites, insensitive to the core layer composition and the processing temperature condition. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
Copper amine–treated wood flour was added to PVC [poly(vinyl chloride)] matrix in order to manufacture PVC/wood‐flour composites. Effects of copper treatments on the mechanical properties of PVC‐wood composites were evaluated. Unnotched impact strength, flexural strength, and flexural toughness of the composites were significantly improved by the wood‐flour copper treatment. The optimum copper concentration range was 0.2 to 0.6 wt% of wood flour. Fractured surfaces were examined by using scanning electron microscopy (SEM) combined with energy‐dispersive spectroscopy (EDS). PVC/wood interfacial debonding was the main fracture mode of untreated wood‐flour composites, whereas wood‐particle pullout and breakage dominating the fractured surfaces of copper‐treated wood‐flour composites. On the fractured surfaces, more PVC could be found on the exposed copper‐treated wood particles than on untreated wood, a result suggesting improved PVC‐wood interfacial adhesion after copper treatments. J. Vinyl Addit. Technol. 10:70–78, 2004. © 2004 Society of Plastics Engineers.  相似文献   

3.
Wood‐plastic composites (WPCs) can absorb moisture in a humid environment owing to the hydrophilic nature of the wood, thereby making the products susceptible to microbial growth and loss of mechanical properties. In this study, rigid poly(vinyl chloride) (PVC)/wood‐flour composites (core layer) were coextruded with either unfilled rigid PVC (cap layer) or rigid PVC filled with a small amount (5–27.5%) of wood flour (composite cap layers) in order to decrease or delay the moisture uptake. The thickness of the cap layer and its composition in terms of wood flour content were the variables examined during coextrusion. Surface color, moisture absorption, and flexural properties of both coextruded and noncoextruded (control) composite samples were characterized. The experimental results indicated that both unfilled PVC and composite cap layers can be encapsulated over rigid PVC/wood‐flour composites in a coextrusion process. The moisture uptake rate was lower when a cap layer was applied in the composites, and the extent of the decrease was a strong function of the amount of wood flour in the cap layer but insensitive to cap layer thickness. Overall, coextruding PVC surface‐rich cap layers on WPCs significantly increased the flexural strength but decreased the flexural modulus as compared with those of control samples. The changes in bending properties were sensitive to both cap layer thickness and wood flour content. J. VINYL ADDIT. TECHNOL., 2008. © 2008 Society of Plastics Engineers  相似文献   

4.
By using a factorial design approach, this study examined the effect of the component materials on the viscoelastic properties of PVC/wood‐flour composites. Statistical analysis was performed to determine the effects of wood‐flour content, acrylic modifier content, and plasticizer content on the die swell ratio and viscosity of the composites measured online on a conical twin‐screw extrusion capillary rheometer. The viscoelastic properties of the samples also were measured using dynamic mechanical analyzer (DMA). Wood‐flour content and acrylic modifier content were the two important variables affecting the die swell ratio, whereas the addition of a low level of plasticizer did not affect this ratio. The die swell increased with the increased acrylic modifier content, but it was reduced considerably by adding wood flour into the PVC matrix. The true viscosity of neat PVC and PVC/wood‐flour composites decreased with the plasticizer content, irrespective of the acrylic modifier content. However, the addition of acrylic modifier significantly increased the viscosity of unfilled PVC, while an opposite trend was observed for the composites, owing to the differing effect of acrylic modifier on the melt elasticity and viscosity of these materials. J. Vinyl Addit. Technol. 10:121–128, 2004. © 2004 Society of Plastics Engineers.  相似文献   

5.
This article describes the properties of composites using unplasticized PVC matrix and wood flour (obtained by crushing the bark of Eugenia jambolana) as filler. Composites were prepared by mixing PVC with varying amounts of wood flour (ranging from 10–40 phr; having particle sizes of 100–150 μm and <50μm) using two‐roll mill followed by compression molding. The effect of wood flour content and its particle size on the properties, i.e., mechanical, dynamic mechanical, and thermal was evaluated. Tensile strength, impact strength, and % elongation at break decreased with increasing amounts of wood flour. Stiffness of the composites (as determined by storage modulus) increased with increasing amounts of the filler. Modulus increased significantly when wood flour having particle size <50 μm was used. Morphological characterization (SEM) showed a uniform distribution of wood flour in the composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

6.
Rigid PVC/wood‐flour composite lumber containing either hardwood (maple) or a softwood (southern pine) wood flour at different levels of wood‐flour content was evaluated for susceptibility to fungal colonization and discoloration by using standard tests that mimicked exterior (ASTM G21) and interior (ASTM D3273) environments, respectively. In the exterior test protocol, although both types of PVC/wood‐flour composite lumber exhibited fungal colonization and discoloration, the composites containing maple exhibited greater discoloration than those containing pine. Irrespective of wood species, fungal colonization and discoloration in the composite lumber were greater at the bottom faces where they were in constant contact with moisture. The wood content range (50–100 phr) used in this study showed no effect on extent of fungal colonization and discoloration. All composites showed no discoloration in the interior test protocol. Both optical microscopy and environmental scanning electron microscopy clearly demonstrated that wood flour particulates are not completely encapsulated by the PVC matrix, so that exposed wood flour in the surface crevices of the composite lumber may serve as points of moisture sorption and staging points for fungal colonization and discoloration. J. Vinyl Addit. Technol. 10:179–186, 2004. © 2004 Society of Plastics Engineers.  相似文献   

7.
The effects of chemical foaming agent (CFA) types (endothermic versus exothermic) and concentrations as well as the influence of all‐acrylic processing aid on the density and cell morphology of extrusion‐foamed neat rigid PVC and rigid PVC/wood‐flour composites were studied. Regardless of the CFA type, the density reduction of foamed rigid PVC/wood‐flour composites was not influenced by the CFA content. The cell size, however, was affected by the CFA type, independent of CFA content. Exothermic foaming agent produced foamed samples with smaller average cell sizes compared to those of endothermic counterparts. The experimental results indicate that the addition of an all‐acrylic processing aid in the formulation of rigid PVC/wood‐flour composite foams provides not only the ability to achieve density comparable to that achieved in the neat rigid PVC foams, but also the potential of producing rigid PVC/wood‐flour composite foams without using any chemical foaming agents.  相似文献   

8.
The conductive polyamide 66 (PA66)/carbon nanotube (CNT) composites reinforced with glass fiber‐multiwall CNT (GF‐MWCNT) hybrids were prepared by melt mixing. Electrostactic adsorption was utilized for the deposition of MWCNTs on the surfaces of glass fibers (GFs) to construct hybrid reinforcement with high‐electrical conductivity. The fabricated PA66/CNT composites reinforced with GF‐MWCNT hybrids showed enhanced electrical conductivity and mechanical properties as compared to those of PA66/CNT or PA66/GF/CNT composites. A significant reduction in percolation threshold was found for PA66/GF‐MWCNT/CNT composite (only 0.70 vol%). The morphological investigation demonstrated that MWCNT coating on the surfaces of the GFs improved load transfer between the GFs and the matrix. The presence of MWCNTs in the matrix‐rich interfacial regions enhanced the tensile modulus of the composite by about 10% than that of PA66/GF/CNT composite at the same CNT loading, which shows a promising route to build up high‐performance conductive composites. POLYM. COMPOS. 34:1313–1320, 2013. © 2013 Society of Plastics Engineers  相似文献   

9.
This study examined the effects of accelerated freeze–thaw actions on the durability of wood fiber‐plastic composites. Rigid PVC formulations filled with various concentrations of wood flour (both pine and maple) were processed in a counterrotating twin‐screw extruder and exposed to cyclic freeze–thaw actions according to ASTM Standard D6662. Freeze–thaw cycling was also modified by omitting portions of the test (either the water or freezing) to verify whether or not moisture was the primary cause for property loss. The durability of exposed samples was assessed in terms of flexural properties, density, and dimensional stability. Scanning electron micrographs of unexposed and freeze–thaw‐exposed samples were taken to qualitatively evaluate the interfacial adhesion between the wood flour and PVC matrix. The experimental results indicated that the density was not affected by freeze–thaw cycling. The dimensional stability was also relatively unaffected, although greater wood flour content exhibited greater dimensional change. The loss in stiffness of the composites was statistically significant after only two freeze–thaw cycles, regardless of both the wood species and content. Conversely, the strength of the composites was not significantly affected by five freeze–thaw cycles at lower wood flour contents (50 and 75 phr). The deleterious effects of the freeze–thaw actions on the strength of the composites became apparent at higher wood flour content (100 phr) after only two freeze–thaw cycles for maple flour and five freeze–thaw cycles for pine flour. The property loss was attributed primarily to the water portion of the cycling, which appears to have led to the decreased interfacial adhesion between the wood flour and the rigid PVC matrix. J. VINYL. ADDIT. TECHNOL. 11:1–8, 2005. © 2005 Society of Plastics Engineers.  相似文献   

10.
The physicomechanical properties, thermal properties, odor, and volatile organic compound (VOC) emissions of natural‐flour‐filled polypropylene (PP) composites were investigated as a function of the zeolite type and content. The surface area and pore structure of the natural and synthetic zeolites were determined by surface area analysis and scanning electron microscopy, respectively. With increasing natural and synthetic zeolite content, the tensile and flexural strengths of the hybrid composites were not significantly changed, whereas the water absorption was slightly increased. The thermal stability and degradation temperature of the hybrid composites were slightly increased with increasing natural and synthetic zeolite content. At natural and synthetic zeolite contents of 3%, the various odors and VOC emissions of the polypropylene/rice husk flour and polypropylene/wood flour hybrid composites were significantly reduced because of the absorption of the odor and VOC materials in the pore structures of the natural and synthetic zeolites. These results suggest that the addition of natural and synthetic zeolites to natural‐flour‐filled thermoplastic polymer composites is an effective method of reducing their odor and VOC emissions without any degradation of their mechanical and thermal properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Effective interfacial adhesion between wood fibers and plastics is crucial for both the processing and ultimate performance of wood–plastic composites. Coupling agents are added to wood–plastic composites to promote adhesion between the hydrophilic wood surface and hydrophobic polymer matrix, but to date no coupling agent has been reported for PVC/wood‐fiber composites that significantly improved their performance and was also cost‐effective. This article presents the results of a study using chitin and chitosan, two natural polymers, as novel coupling agents for PVC/wood‐flour composites. Addition of chitin and chitosan coupling agents to PVC/wood‐flour composites increased their flexural strength by ~20%, their flexural modulus by ~16%, and their storage modulus by ~33–74% compared to PVC/wood‐flour composite without the coupling agent. Significant improvement in composite performance was attained with 0.5 wt% of chitosan and when 6.67 wt% of chitin was used. J. VINYL ADDIT. TECHNOL., 11:160–165, 2005. © 2005 Society of Plastics Engineers  相似文献   

12.
Relatioships between the density of foamed rigid PVC/wood‐flour composites and the moisture content of the wood flour, the chemical foaming agent (CFA) content, the content of all‐acrylic foam modifier, and the extruder die temperature were determined by using a response surface model based on a four‐factor central composite design. The experimental results indicated that there is no synergistic effect between teh CFA content and the moisture content of the wood flour. Wood flour moisture could be used effectively as foaming agent in the production of rigid PVC/wood‐flour composite foams. Foam density as low as 0.4 g/cm3 was produced without the use of chemical foaming agents. However, successful foaming of rigid PVC/wood‐flour composite with moisture contained in wood flour strongly depends upon the presence of all‐acrylic foam modifier in the formulation and the extrusion die temperature. The lowest densities were achieved when the all‐acrylic foam modifier concentration was between 7 phr and 10 phr and extruder die temperature was as low as 170°C.  相似文献   

13.
Wood flour reinforced poly(propylene carbonate) (PPC) composites were prepared by melt blending followed by compression molding. The effects of reinforcement on the morphology, static and dynamic mechanical properties, and thermal properties of PPC/wood flour composites were investigated. In terms of mechanical properties, wood flour had the significant effect of improving tensile strength and stiffness. Scanning electron microscopic examination revealed good dispersion of wood flour (especially at lower content) in the PPC matrix. Moreover, experimental results indicated that the wood flour addition led to an obvious improvement in the thermal stability of the composites. This paper demonstrates that the incorporation of low‐cost and biodegradable wood flour into PPC provides a practical way to produce completely biodegradable and cost‐competitive composites with good mechanical properties. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 782–787, 2006  相似文献   

14.
加工助剂对PVC木塑复合材料性能的影响   总被引:1,自引:1,他引:1  
研究了4种新型加工助剂对聚氯乙烯(PVC)木塑复合材料的加工特性和物理力学性能的影响,并利用扫描电子显微镜(SEM)研究复合材料的冲击断面。结果表明,以不饱和芳香族碳氢化合物、脂肪烃树脂为主要组分的加工助剂,能够提高木粉在PVC基体中的分散性,改善木粉与PVC的相容性,从而明显提高PVC木塑材料的力学性能和加工性能;以钙皂和饱和脂肪酸酰胺混合物、脂肪醇和脂肪酸酯的混合物为主要组分的加工助剂,对木粉的分散性和复合材料的加工性能有一定的改善,但其用量较大时对复合材料的力学性能有不利影响。  相似文献   

15.
This study was aimed at examining the effects of wood flour contents, wood species (softwood vs. hardwood), and particle size on the fusion characteristics (fusion time, fusion temperature, fusion torque, and fusion energy) of rigid PVC/wood‐flour composites in a torque rheometer. Neat rigid PVC exhibited one fusion peak, whereas the addition of wood flour into the PVC matrix led to two fusion peaks. Increased wood flour content caused a significant increase in the time, temperature, and energy at which fusion between the primary particles started, thereby leading to increased fusion torque, irrespective of the wood flour species. These results implied that rigid PVC filled with wood flour must be processed at higher temperatures than neat resin. Although fusion characteristics of the composites were influenced by the wood species, a clear trend between softwood and hardwood species could not be established. However, finer particles fused more quickly and needed less energy than coarse ones. J. VINYL ADDIT. TECHNOL., 13:7–13, 2007. © 2007 Society of Plastics Engineers.  相似文献   

16.
BACKGROUND: Renewable resources and recyclable thermoplastic polymers provide an attractive eco‐friendly quality as well as environmental sustainability to the resulting natural fibre‐reinforced composites. The properties of polypropylene (PP)‐based composites reinforced with rice hulls or kenaf fibres were investigated with respect to their recyclability. Rice hulls from rice processing plants and natural lignocellulosic kenaf fibres from the bast of the plant Hibiscus cannabinus represent renewable sources that could be utilized for composites. Maleic anhydride‐grafted PP was used as a coupling agent to improve the interfacial adhesion between fillers and matrix. Composites containing 30 wt% reinforcement were manufactured by melt mixing and their mechanical and thermal properties were determined. The composites were then pelletized and reprocessed by melt mixing. Finally, structure/properties relationships were investigated as a function of the number of reprocessing cycles. RESULTS: It is found that the recycling processes do not induce very significant changes in flexural strength and thermal stability of the composites. In particular PP‐based composites reinforced with kenaf fibres are less sensitive to reprocessing cycles with respect to PP‐based composites reinforced with rice hulls. CONCLUSION: The response of PP‐based composites reinforced with rice hulls or kenaf fibres is promising since their properties remain almost unchanged after recycling processes. Moreover, the recycled composites are suitable for applications as construction materials for indoor applications. In fact, the flexural strength and modulus of these materials are comparable to those of conventional formaldehyde wood medium‐density fibreboards. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
Potassium methyl siliconate (PMS) was investigated as a new nano modifier of wood fiber and wood flour to improve the compatibility between the fiber/flour and the plastic matrix in fiber reinforced plastic composites. Before injection molding, bleached and brown pulp fibers and mixed species wood flour were pretreated in PMS solutions. The morphology of the treated and untreated fiber and flour, the compatibility of PMS‐treated fiber and flour with polyethylene (PE), and the water sorption and volumetric swell of PMS‐treated fiber/flour plastic composites in a long‐term soaking test were evaluated. Fiber and flour treated with PMS increased the compatibility between the fiber/flour and the PE matrix. The increased compatibility of PMS‐treated fiber and flour with the matrix contributed to the reduction of water sorption and, thus, increased dimensional stability. For all composites, water sorption and volumetric swell of fiber/four plastic composites decreased as the ratio of fiber to flour increased. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
This study was conducted to characterize the mechanical properties of extrusion‐foamed neat rigid PVC and rigid PVC/wood‐flour composites by using endothermic and exothermic chemical foaming agents (CFAs). The specific elongation at break (ductility) of the samples was improved by foaming, while the opposite trend was observed for the tensile strength and modulus of the samples, regardless of the chemical foaming agent type. In addition, experimental results indicated that foaming reduced the Izod impact resistance of both neat rigid PVC and rigid PVC/wood‐flour composites but that this reduction was not statistically significant for the composites. A comparison between batch microcellular processing and extrusion foam processing was made, which demonstrated that foams with very fine cells (microcellular processed) exhibit better impact strength than foams with larger cells (extrusion processed with CFAs).  相似文献   

19.
An environmentally friendly bleached extruder chemi‐mechanical pulp fiber or wood flour was melt compounded with poly(lactic acid) (PLA) into a biocomposite and hot compression molded. The mechanical, thermal, and rheological properties were determined. The chemical composition, scanning electron microscopy, and Fourier transform infrared spectroscopy results showed that the hemicellulose in the pulp fiber raw material was almost completely removed after the pulp treatment. The mechanical tests indicated that the pulp fiber increased the tensile and flexural moduli and decreased the tensile, flexural, and impact strengths of the biocomposites. However, pulp fiber strongly reinforced the PLA matrix because the mechanical properties of pulp fiber‐PLA composites (especially the tensile and flexural strengths) were better than those of wood flour‐PLA composites. Differential scanning calorimetry analysis confirmed that both pulp fiber and wood flour accelerated the cold crystallization rate and increased the degree of crystallinity of PLA, and that this effect was greater with 40% pulp fiber. The addition of pulp fiber and wood flour modified the rheological behavior because the composite viscosity increased in the presence of fibers and decreased as the test frequency increased. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44241.  相似文献   

20.
Short glass fibers were added to poly(vinyl chloride) (PVC)/wood flour composites as reinforcement agents. Unnotched and notched impact strength of PVC/wood flour/glass fiber hybrid composites could be increased significantly without losing flexural properties by adding type L glass fibers and over 40% of PVC. There was no such improvement when using type S glass fiber. The impact strength of hybrid composites increased along with the increment of the type L glass fiber content at a 50% PVC content. At high PVC contents, impact fracture surfaces were characterized by wood particle, glass fiber breakage and pullout, whereas interfacial debonding was the dominant fracture mode at higher filler concentrations. The significant improvement in impact strength of hybrid composites was attributed to the formation of the three‐dimensional network glass fiber architecture between type L glass fibers and wood flour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号