首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Auxin regulates plant growth and development, as well as helps plants to survive abiotic stresses, but the effects of auxin on the growth of alkaline-stressed rice and the underlying molecular and physiological mechanisms remain unknown. Through exogenous application of IAA/TIBA, this study explored the physiological and molecular mechanisms of alkaline stress tolerance enhancement using two rice genotypes. Alkaline stress was observed to damage the plant growth, while exogenous application of IAA mitigates the alkaline-stress-induce inhibition of plant growth. After application of exogenous IAA to alkaline-stressed rice, dry shoot biomass, foliar chlorophyll content, photosynthetic rate in the two rice genotypes increased by 12.6–15.6%, 11.7–40.3%, 51.4–106.6%, respectively. The adventitious root number, root surface area, total root length and dry root biomass in the two rice genotypes increased by 29.3–33.3%, 26.4–27.2%, 42.5–35.5% and 12.8–33.1%, respectively. The accumulation of H2O2, MAD were significantly decreased with the application of IAA. The activities of CAT, POD, and SOD in rice plants were significantly increased by exogenous application of IAA. The expression levels of genes controlling IAA biosynthesis and transport were significantly increased, while there were no significant effects on the gene expression that controlled IAA catabolism. These results showed that exogenous application of IAA could mitigate the alkaline-stress-induced inhibition of plant growth by regulating the reactive oxygen species scavenging system, root development and expression of gene involved in IAA biosynthesis, transport and catabolism. These results provide a new direction and empirical basis for improving crop alkaline tolerance with exogenous application of IAA.  相似文献   

2.
3.
Rhaponticum carthamoides (Willd.) Iljin is a rare, pharmacopoeial, and medicinal plant, endemic to Siberia and endangered due to the massive collection of raw material from the natural habitat. The aim of the current study was to estimate the effect of sucrose concentration (0–7%) on R. carthamoides transformed root growth and on caffeoylquinic acid derivative (CQA) and flavonoid production. Sucrose in higher concentrations may induce osmotic stress and thus may affect secondary metabolism in plants. It was revealed that sucrose concentration influenced R. carthamoides transformed root biomass and modified the phenolic compound metabolic pathway. However, the dynamics of both processes varied significantly. The optimal sucrose level was different for biomass accumulation and the biosynthesis of specialized metabolite. The highest dry weight of roots was achieved for 7% sucrose (31.17 g L−1 of dry weight), while 1% sucrose was found to be optimal for phenolic acid and flavonoid production. Considering the dry weight increase and metabolite accumulation, 3% sucrose was revealed to give optimal yields of CQAs (511.1 mg L−1) and flavonoids (38.9 mg L−1). Chlorogenic acid, 3,5-, 4,5-di-O-caffeoylquinic acids, 1,4,5-O-tricaffeoylquinic acid, and a tentatively-identified tricaffeoylquinic acid derivative 1 were found to be the most abundant specialized metabolites among the identified CQAs. Our findings indicate that R. carthamoides transformed roots may be an efficient source of CQA derivatives, with valuable health-promoting activities.  相似文献   

4.
Sulfur is an essential plant macronutrient, and its adequate supply allows an efficient root storage and sugar extractability in sugar beets (Beta vulgaris L.). In this study, we investigated the effect of changes in sulfur availability on the endophytic community structure of sugar beets. Plants were hydroponically grown in a complete nutrient solution (S-supplied), a nutrient solution without MgSO4 (S-deprived), and a nutrient solution without MgSO4 for six days and resupplied with 100 μM MgSO4 for 48 h (S-resupplied). The sulfur status was monitored by inductively coupled plasma ICP–OES, and combustion analysis together with the evaluation of microRNA395 as a biomarker for sulfate status. Metabarcoding of the bacterial 16S rRNA gene was carried out in order to determine leaf endophytic community structure. The Shannon diversity index significantly differed (p < 0.05) between sulfate-supplied and sulfate-deprived seedlings. Validation by Real-Time PCR showed a significant increase (p < 0.05) of Burkholderia spp. in sulfate-deprived plants as compared to sulfate-supplied ones. The study sheds new light on the effects of nutrient deficiency on the microbiome of sugar beet plants.  相似文献   

5.
Marker-assisted selection enables breeders to quickly select excellent root architectural variations, which play an essential role in plant productivity. Here, ten root-related and shoot biomass traits of a new F6 recombinant inbred line (RIL) population were investigated under hydroponics and resulted in high heritabilities from 0.61 to 0.83. A high-density linkage map of the RIL population was constructed using a Brassica napus 50k Illumina single nucleotide polymorphism (SNP) array. A total of 86 quantitative trait loci (QTLs) explaining 4.16–14.1% of the phenotypic variances were detected and integrated into eight stable QTL clusters, which were repeatedly detected in different experiments. The codominant markers were developed to be tightly linked with three major QTL clusters, qcA09-2, qcC08-2, and qcC08-3, which controlled both root-related and shoot biomass traits and had phenotypic contributions greater than 10%. Among these, qcA09-2, renamed RT.A09, was further fine-mapped to a 129-kb interval with 19 annotated genes in the B. napus reference genome. By integrating the results of real-time PCR and comparative sequencing, five genes with expression differences and/or amino acid differences were identified as important candidate genes for RT.A09. Our findings laid the foundation for revealing the molecular mechanism of root development and developed valuable markers for root genetic improvement in rapeseed.  相似文献   

6.
Saline–alkaline stress suppresses rice growth and threatens crop production. Despite substantial research on rice’s tolerance to saline–alkaline stress, fewer studies have examined the impact of magnetic water treatments on saline–alkaline-stressed rice plants. We explored the physiological and molecular mechanisms involved in saline–alkaline stress tolerance enhancement via irrigation with magnetized water using Nipponbare. The growth of Nipponbare plants was inhibited by saline–alkaline stress, but this inhibition was alleviated by irrigating the plants with magnetized water, as evidenced by greater plant height, biomass, chlorophyll content, photosynthetic rates, and root system in plants irrigated with magnetized water compared to those irrigated with non-magnetized water. Plants that were irrigated with magnetized water were able to acquire more total nitrogen. In addition, we proved that rice seedlings irrigated with magnetized water had a greater root NO3-nitrogen concentration and root NH4+-nitrogen concentration than plants irrigated with non-magnetized water. These findings suggest that treatment with magnetized water could increase nitrogen uptake. To test this hypothesis, we analyzed the expression levels of genes involved in nitrogen acquisition. The expression levels of OsNRT1;1, OsNRT1;2, OsNRT2;1, OsAMT1;2, OsAMT2;1, OsAMT2;2, OsAMT2;3, OsAMT3;1, OsAMT3;2, and OsAMT3;3 were higher in plants exposed to magnetized water medium compared to those exposed to non-magnetized water media. We further demonstrated that treatment with magnetized water increases available nitrogen, NO3-nitrogen content, and NH4+-nitrogen content in soil under saline–alkaline stress. Our results revealed that the increased resistance of rice seedlings to saline–alkaline stress may be attributable to a very effective nitrogen acquisition system enhanced by magnetized water.  相似文献   

7.
A new 1D-coordination polymer [Co(Piv)2(NH2(CH2)6NH2)]n (1, Piv is Me3CCO2 anion) was obtained, the mononuclear fragments {Co(O2CR)2} within which are linked by μ-bridged molecules of hexamethylenediamine (NH2(CH2)6NH2). For this compound, two different monoclinic C2/c (α-1) and P2/n (β-1) phases were found at room temperature by single-crystal X-ray diffraction analysis, with a similar structure of chains and their packages in unit cells. The low-temperature phase (γ-1) of crystal 1 at 150 K corresponds to the triclinic space group P-1. As the temperature decreases, the structural phase transition (SPT) in the α-1 and β-1 crystals is accompanied by an increase in the crystal packing density caused by the rearrangements of both H-bonds and the nearest ligand environment of the cobalt atom (“octahedral CoN2O4 around the metal center at room temperature” → “pseudo-tetrahedral CoN2O2 at 150 K”). The SPT was confirmed by DSC in the temperature range 210–150 K; when heated above 220 K, anomalies in the behavior of the heat flow are observed, which may be associated with the reversibility of SPT; endo effects are observed up to 300 K. The SPT starts below 200 K. At 100 K, a mixture of phases was found in sample 1: 27% α-1 phase, 61% γ-1 phase. In addition, at 100 K, 12% of the new δ-1 phase was detected, which was identified from the diffraction pattern at 260 K upon subsequent heating: the a,b,c-parameters and unit cell volume are close to the structure parameters of γ-1, and the values of the α,β,γ-angles are significantly different. Further heating leads to a phase transition from δ-1 to α-1, which both coexist at room temperature. According to the DC magnetometry data, during cooling and heating, the χMT(T) curves for 1 form a hysteresis loop with ~110 K, in which the difference in the χMT values reaches 9%. Ab initio calculations of the electronic structure of cobalt(II) in α-1 and γ-1 have been performed. Based on the EPR data at 10 K and the ab initio calculations, the behavior of the χMT(T) curve for 1 was simulated in the temperature range of 2–150 K. It was found that 1 exhibits slow magnetic relaxation in a field of 1000 Oe.  相似文献   

8.
Single-point mutation in the ACTIN2 gene of the der1–3 mutant revealed that ACTIN2 is an essential actin isovariant required for root hair tip growth, and leads to shorter, thinner and more randomly oriented actin filaments in comparison to the wild-type C24 genotype. The actin cytoskeleton has been linked to plant defense against oxidative stress, but it is not clear how altered structural organization and dynamics of actin filaments may help plants to cope with oxidative stress. In this study, we characterized root growth, plant biomass, actin organization and antioxidant activity of the der1–3 mutant under oxidative stress induced by paraquat and H2O2. Under these conditions, plant growth was better in the der1–3 mutant, while the actin cytoskeleton in the der1–3 carrying pro35S::GFP:FABD2 construct showed a lower bundling rate and higher dynamicity. Biochemical analyses documented a lower degree of lipid peroxidation, and an elevated capacity to decompose superoxide and hydrogen peroxide. These results support the view that the der1–3 mutant is more resistant to oxidative stress. We propose that alterations in the actin cytoskeleton, increased sensitivity of ACTIN to reducing agent dithiothreitol (DTT), along with the increased capacity to decompose reactive oxygen species encourage the enhanced tolerance of this mutant against oxidative stress.  相似文献   

9.
Ensete (Ensete ventricosum W. Cheesm.) is a root crop which stores starch in the root and in the lower part of the stem. It is grown in the southwest of Ethiopia and due to its drought resistance, it is of outstanding importance for the supply of food to the local population. Until now virtually nothing is known about the response of Ensete to fertilizer application. Field trials carried out on three representative soils in Ethiopia showed that Ensete biomass yields were increased significantly on all three soils by nitrogen and phosphorus application. Potassium had only marginal effect on biomass growth but favourably influenced starch production. Sulfate application had no major impact on growth and starch yield. The yield response was well related to the level of available nutrients in the soil, as determined by electroultrafiltration (EUF). Leaf analysis provided preliminary evidence that optimum levels of N, P, and K may be 3.8%, 0.3%, and 4.8%, respectively.  相似文献   

10.
Herein the effects of three platinum complexes, namely (SP-4-2)-(2,2′-bipyridine)dichloridoplatinum(II), Pt-bpy, (SP-4-2)-dichlorido(1,10-phenanthroline) platinum(II), Pt-phen, and (SP-4-2)-chlorido(2,2′:6′,2′′-terpyridine)platinum(II) chloride, Pt-terpy, on the aggregation of an amyloid model system derived from the C-terminal domain of Aβ peptide (Aβ21–40) were investigated. Thioflavin T (ThT) binding assays revealed the ability of Pt(II) compounds to repress amyloid aggregation in a dose-dependent way, whereas the ability of Aβ21–40 peptide to interfere with ligand field of metal complexes was analyzed through UV-Vis absorption spectroscopy and electrospray ionization mass spectrometry. Spectroscopic data provided micromolar EC50 values and allowed to assess that the observed inhibition of amyloid aggregation is due to the formation of adducts between Aβ21–40 peptide and complexes upon the release of labile ligands as chloride and that they can explore different modes of coordination toward Aβ21–40 with respect to the entire Aβ1–40 polypeptide. In addition, conformational studies through circular dichroism (CD) spectroscopy suggested that Pt-terpy induces soluble β-structures of monomeric Aβ21–40, thus limiting self-recognition. Noticeably, Pt-terpy demonstrated the ability to reduce the cytotoxicity of amyloid peptide in human SH-SY5Y neuroblastoma cells. Presented data corroborate the hypothesis to enlarge the application field of already known metal-based agents to neurodegenerative diseases, as potential neurodrugs.  相似文献   

11.
Acyl activating enzyme 3 (AAE3) was identified as being involved in the acetylation pathway of oxalate degradation, which regulates the responses to biotic and abiotic stresses in various higher plants. Here, we investigated the role of Glycine soja AAE3 (GsAAE3) in Cadmium (Cd) and Aluminum (Al) tolerances. The recombinant GsAAE3 protein showed high activity toward oxalate, with a Km of 105.10 ± 12.30 μM and Vmax of 12.64 ± 0.34 μmol min−1 mg−1 protein, suggesting that it functions as an oxalyl–CoA synthetase. The expression of a GsAAE3–green fluorescent protein (GFP) fusion protein in tobacco leaves did not reveal a specific subcellular localization pattern of GsAAE3. An analysis of the GsAAE3 expression pattern revealed an increase in GsAAE3 expression in response to Cd and Al stresses, and it is mainly expressed in root tips. Furthermore, oxalate accumulation induced by Cd and Al contributes to the inhibition of root growth in wild soybean. Importantly, GsAAE3 overexpression increases Cd and Al tolerances in A. thaliana and soybean hairy roots, which is associated with a decrease in oxalate accumulation. Taken together, our data provide evidence that the GsAAE3-encoded protein plays an important role in coping with Cd and Al stresses.  相似文献   

12.
In this study, we investigated the effects of water-deficit stress on the leaf anatomical traits, physiological traits, and stem starch content in Quercus acutissima Carruth and Quercus serrata Murray by subjecting their seedlings to well-watered (WW) and water-deficit stress (WS) treatments. The water stress-induced changes in trichome density, trichome-to-stomata ratio, mesophyll thickness, vein density, vein distance, vein loopiness, vessel diameter, transpiration (E), stomatal conductance (gs), water use efficiency (WUE), and starch content were analyzed between two time points. While trichome density did not vary between treatments in Q. acutissima, it dramatically increased in Q. serrata (62.63–98.96 trichomes mm−2) at the final week. The WS-treated seedlings had a thicker palisade mesophyll (162.85–169.56 µm) than the WW-treated samples (118.56–132.25 µm) in both species. The vein density and loopiness increased significantly in the WS-treated Q. serrata seedlings. Small-sized vessels (10–50 µm) were more frequent in the WS than the WW in Q. serrata. The E, gs, WUE, and starch content declined significantly in the WS-treated seedlings compared with WW-treated samples in both species. Further, principal component analysis revealed significant relationships between anatomical and physiological traits, particularly in the WS-treated seedlings of Q. serrata. The coordinated changes in leaf anatomical traits, physiological traits, and stem starch content indicate an important role in the survival of Q. acutissima and Q. serrata seedlings in water-deficit stress environments, although Q. serrata may show higher survivability under prolonged water stress than Q. acutissima.  相似文献   

13.
14.
15.
Poly(hydroxyethyl methacrylate-co-glycidyl methacrylate)-grafted magnetic chitosan microspheres (HG-MCM) were prepared using reversed-phase suspension polymerization method. The HG-MCM presented a core-shell structure and regular spherical shape with poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) grafted onto the chitosan layer coating the Fe3O4 cores. The average diameter of the magnetic microspheres was 10.67 μm, within a narrow size distribution of 6.6–17.4 μm. The saturation magnetization and retentivity of the magnetic microspheres were 7.0033 emu/g and 0.6273 emu/g, respectively. The application of HG-MCM in immobilization of lactase showed that the immobilized enzyme presented higher storage, pH and thermal stability compared to the free enzyme. This indicates that HG-MCM have potential applications in bio-macromolecule immobilization.  相似文献   

16.
17.
As potassium (K) deficiency in paddy soils is becoming one of the limiting factors for increasing rice yield in Asia, it is important to identify genotypic differences and exploit genetic potential for K use efficiency in lowland rice. Successful identification of K-efficient genotypes and genetic improvement largely depend on development of accurate and feasible screening parameters and methods. In this study, over 134 rice (Oryza sativa L.) genotypes were tested under nutrient solution and field conditions at low and adequate K levels to examine genotypic differences in K internal use efficiency (KIUE) and identify the associated plant traits. Marked differences in K internal use efficiency for biomass production (KIUE-B) and for grain production (KIUE-G) were observed among the rice genotypes. The KIUE-B at the seedling stage (g DW g–1 K taken up) differed sixfold among the 134 rice genotypes under low K. A positive and close correlation was observed between the relative shoot and root dry matter yields, relative root K accumulation and the KIUE-B at the seedling stage, respectively. However, a negative and significant correlation was found between the KIUE-B and the relative K concentrations in shoots and roots, and the relative K accumulation in shoots, respectively. The results from the two years of field experiments showed that rice genotypes with greater KIUE-B at the seedling stage had higher KIUE-B at the tillering stage and higher KIUE-G at physiological maturity. Both KIUE-B at the tillering stage and KIUE-G at physiological maturity were closely and positively correlated with the relative shoot dry matter yield in shoots at the tillering stage and harvest index under low K, and had a highly significant and negative correlation with the shoot K concentration and accumulation at low K among the nine rice genotypes. Therefore, the K internal use efficiency could be used as an index for selecting K-efficient genotypes. The relative shoot biomass, relative root length, K concentration and accumulation in shoots as well as harvest index are among the most important plant traits for identifying K-efficient genotypes in lowland rice.  相似文献   

18.
Two experiments examined options for reducing the inputs of P and K fertilizers for hybrid squash (Cucurbita maxima L.) at Pukekohe, New Zealand. The first experiment examined the effects of elevating the NaHCO3-soluble P from 32 to 130 mg kg–1 and the exchangeable K from 140 to 350 mg kg–1 within strips from 0 to 0.75 m around rows of hybrid squash planted 1.5 m apart. From both P and K, crop yield increased as the width of the fertilized strip was increased up to 0.25 m, while wider fertilized strips had no further effect. These results followed similar effects on plant dry matter and tissue P or K concentration during early growth, and are explained in terms of the P and K accumulation by the crop, the decline during growth of the sensitivity of the crop to soil P and K fertility associated with declining rates of P and K uptake per unit length of root. Implications for fertilizer management for hybrid squash are also discussed.The second experiment compared the effects of partially acidulated phosphate rock and triple-superphosphate on soil P fertility, growth and yield of hybrid squash. Partially acidulated phosphate rock had smaller effects than those of triple-superphosphate on NaHCO3-soluble P levels in the soil, plant dry weight and tissue P concentration soon after emergence, and subsequently crop yield. On average, partially acidulated phosphate rock increased crop yield by about 70% of that following the application of the same quantity of P as triple-superphosphate. This lower effectiveness of partially acidulated phosphate rock for hybrid squash is explained in terms of its lower solubility and hence smaller effect on NaHCO3-soluble P in the soil during early growth, when the crop is most sensitive to soil P fertility.  相似文献   

19.
In order to fully understand the variations of fruit quality-related phytochemical composition in Chinese bayberry (Myrica rubra Sieb. et Zucc.), mature fruit of 17 cultivars from Zhejiang and Jiangsu provinces was used for the investigation of fruit quality attributes, including fruit color, soluble sugars, organic acids, total phenolics, flavonoids, antioxidant capacity, etc. Sucrose was the main soluble sugar, while citric acid was the main organic acid in bayberry fruit. The content of total phenolics and total flavonoids were positively correlated with 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) antioxidant activity and 2,2ʹ-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity. Five anthocyanidins, i.e., delphinidin–hexoside (Dp–Hex), cyanidin-3–O-galactoside (C-3–Gal), cyanidin-3–O-glucoside (C-3–Glu), pelargonidin-3–O-glucoside (Pg-3–Glu) and peonidin-3-O-glucoside (Pn-3–Glu), and seven flavonols compounds, i.e., myricetin-3-O-rhamnoside (M-3–Rha), myricetin deoxyhexoside–gallate (M-DH–G), quercetin-3-O-galactoside (Q-3–Gal), quercetin-3–O-glucoside (Q-3–Glu), quercetin-3–O-rhamnoside (Q-3–Rha), kaempferol-3–O-galactoside (K-3–Gal) and kaempferol-3–O-glucoside (K-3–Glu), were identified and characterized among the cultivars. The significant differences in phytochemical compositions among cultivars reflect the diversity in bayberry germplasm, and cultivars of good flavor and/or rich in various health-promoting phytochemicals are good candidates for future genetic breeding of bayberry fruit of high quality. In conclusion, our results may provide important information for further breeding or industrial utilization of different bayberry resources.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号