首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TMEM16A is a Ca2+-activated Cl channel that controls broad cellular processes ranging from mucus secretion to signal transduction and neuronal excitability. Recent studies have reported that membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is an important cofactor that allosterically regulates TMEM16A channel activity. However, the detailed regulatory actions of PIP2 in splice variants of TMEM16A remain unclear. Here, we demonstrated that the attenuation of membrane phosphoinositide levels selectively inhibited the current amplitude of the TMEM16A(ac) isoform by decreasing the slow, but not instantaneous, Cl currents, which are independent of the membrane potential and specific to PI(4,5)P2 depletion. The attenuation of endogenous PI(4,5)P2 levels by the activation of Danio rerio voltage-sensitive phosphatase (Dr-VSP) decreased the Cl currents of TMEM16A(ac) but not the TMEM16A(a) isoform, which was abolished by the co-expression of PIP 5-kinase type-1γ (PIPKIγ). Using the rapamycin-inducible dimerization of exogenous phosphoinositide phosphatases, we further revealed that the stimulatory effects of phosphoinositide on TMEM16A(ac) channels were similar in various membrane potentials and specific to PI(4,5)P2, not PI4P and PI(3,4,5)P3. Finally, we also confirmed that PI(4,5)P2 resynthesis is essential for TMEM16A(ac) recovery from Dr-VSP-induced current inhibition. Our data demonstrate that membrane PI(4,5)P2 selectively modulates the gating of the TMEM16A(ac) channel in an agonistic manner, which leads to the upregulation of TMEM16A(ac) functions in physiological conditions.  相似文献   

2.
Oxaliplatin is a third-generation platinum-based anticancer drug that is widely used as first-line treatment for colorectal carcinoma. Patients treated with oxaliplatin develop an acute peripheral pain several hours after treatment, mostly characterized by cold allodynia as well as a long-term chronic neuropathy. These two phenomena seem to be causally connected. However, the underlying mechanisms that trigger the acute peripheral pain are still poorly understood. Here we show that the activity of the transient receptor potential melastatin 8 (TRPM8) channel but not the activity of any other member of the TRP channel family is transiently increased 1 h after oxaliplatin treatment and decreased 24 h after oxaliplatin treatment. Mechanistically, this is connected with activation of the phospholipase C (PLC) pathway and depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) after oxaliplatin treatment. Inhibition of the PLC pathway can reverse the decreased TRPM8 activity as well as the decreased PIP2-concentrations after oxaliplatin treatment. In summary, these results point out transient changes in TRPM8 activity early after oxaliplatin treatment and a later occurring TRPM8 channel desensitization in primary sensory neurons. These mechanisms may explain the transient cold allodynia after oxaliplatin treatment and highlight an important role of TRPM8 in oxaliplatin-induced acute and neuropathic pain.  相似文献   

3.
In pancreatic β-cells of the line INS-1, glucose uptake and metabolism induce the openings of Ca2+-permeable TRPM3 channels that contribute to the elevation of the intracellular Ca2+ concentration and the fusion of insulin granules with the plasma membrane. Conversely, glucose-induced Ca2+ signals and insulin release are reduced by the activity of the serine/threonine kinase CK2. Therefore, we hypothesized that TRPM3 channels might be regulated by CK2 phosphorylation. We used recombinant TRPM3α2 proteins, native TRPM3 proteins from INS-1 β-cells, and TRPM3-derived oligopeptides to analyze and localize CK2-dependent phosphorylation of TRPM3 channels. The functional consequences of CK2 phosphorylation upon TRPM3-mediated Ca2+ entry were investigated in Fura-2 Ca2+-imaging experiments. Recombinant TRPM3α2 channels expressed in HEK293 cells displayed enhanced Ca2+ entry in the presence of the CK2 inhibitor CX-4945 and their activity was strongly reduced after CK2 overexpression. TRPM3α2 channels were phosphorylated by CK2 in vitro at serine residue 1172. Accordingly, a TRPM3α2 S1172A mutant displayed enhanced Ca2+ entry. The TRPM3-mediated Ca2+ entry in INS-1 β-cells was also strongly increased in the presence of CX-4945 and reduced after overexpression of CK2. Our study shows that CK2-mediated phosphorylation controls TRPM3 channel activity in INS-1 β-cells.  相似文献   

4.
Transient receptor potential melastatin-4 (TRPM4) is activated by an increase in intracellular Ca2+ concentration and is expressed on smooth muscle cells (SMCs). It is implicated in the myogenic constriction of cerebral arteries. We hypothesized that TRPM4 has a general role in intracellular Ca2+ signal amplification in a wide range of blood vessels. TRPM4 function was tested with the TRPM4 antagonist 9-phenanthrol and the TRPM4 activator A23187 on the cardiovascular responses of the rat, in vivo and in isolated basilar, mesenteric, and skeletal muscle arteries. TRPM4 inhibition by 9-phenanthrol resulted in hypotension and a decreased heart rate in the rat. TRPM4 inhibition completely antagonized myogenic tone development and norepinephrine-evoked vasoconstriction, and depolarization (high extracellular KCl concentration) evoked vasoconstriction in a wide range of peripheral arteries. Vasorelaxation caused by TRPM4 inhibition was accompanied by a significant decrease in intracellular Ca2+ concentration, suggesting an inhibition of Ca2+ signal amplification. Immunohistochemistry confirmed TRPM4 expression in the smooth muscle cells of the peripheral arteries. Finally, TRPM4 activation by the Ca2+ ionophore A23187 was competitively inhibited by 9-phenanthrol. In summary, TRPM4 was identified as an essential Ca2+-amplifying channel in peripheral arteries, contributing to both myogenic tone and agonist responses. These results suggest an important role for TRPM4 in the circulation. The modulation of TRPM4 activity may be a therapeutic target for hypertension. Furthermore, the Ca2+ ionophore A23187 was identified as the first high-affinity (nanomolar) direct activator of TRPM4, acting on the 9-phenanthrol binding site.  相似文献   

5.
Transient receptor potential (TRP) channels are cation channels that play a regulatory role in pain and thermosensation, insulin secretion, and neurotransmission. It has been proposed that activation of TRP channels requires phosphatidylinositol 4,5-bisphosphate, the major substrate for phospholipase C (PLC). We investigated whether inhibition of PLCβ has an impact on TRP channel signaling. A genetic approach was used to avoid off-target effects observed when using a pharmacological PLCβ inhibitor. In this study, we show that expression of PLCβ1ct and PLCβ3ct, truncated forms of PLCβ1 or PLCβ3 that contain the C-terminal membrane binding domains, almost completely blocked the signal transduction of a Gαq-coupled designer receptor, including the phosphorylation of ERK1/2. In contrast, expression of the helix-turn-helix motif (Hα1—Hα2) of the proximal C-terminal domain of PLCβ3 did not affect Gαq-coupled receptor signaling. PLCβ3ct expression impaired signaling of the TRP channels TRPM3 and TRPM8, stimulated with either prognenolone sulfate or icilin. Thus, the C-terminal domain of PLCβ3 interacts with plasma membrane targets, most likely phosphatidylinositol 4,5-bisphosphate, and in this way blocks the biological activation of TRPM3 and TRPM8, which require interaction with this phospholipid. PLCβ thus regulates TRPM3 and TRPM8 channels by masking phosphatidylinositol 4,5-bisphosphate with its C-terminal domain.  相似文献   

6.
cADPR is a second messenger that releases Ca2+ from intracellular stores via the ryanodine receptor. Over more than 15 years, it has been controversially discussed whether cADPR also contributes to the activation of the nucleotide-gated cation channel TRPM2. While some groups have observed activation of TRPM2 by cADPR alone or in synergy with ADPR, sometimes only at 37 °C, others have argued that this is due to the contamination of cADPR by ADPR. The identification of a novel nucleotide-binding site in the N-terminus of TRPM2 that binds ADPR in a horseshoe-like conformation resembling cADPR as well as the cADPR antagonist 8-Br-cADPR, and another report that demonstrates activation of TRPM2 by binding of cADPR to the NUDT9H domain raised the question again and led us to revisit the topic. Here we show that (i) the N-terminal MHR1/2 domain and the C-terminal NUDT9H domain are required for activation of human TRPM2 by ADPR and 2′-deoxy-ADPR (2dADPR), (ii) that pure cADPR does not activate TRPM2 under a variety of conditions that have previously been shown to result in channel activation, (iii) the cADPR antagonist 8-Br-cADPR also inhibits activation of TRPM2 by ADPR, and (iv) cADPR does not bind to the MHR1/2 domain of TRPM2 while ADPR does.  相似文献   

7.
The relationship between polyphosphoinositide and phosphatidic acid (PA) metabolism and Mg-ATP dependent shape and viscosity changes in erythrocyte ghosts from four mammalian species was examined. Ghosts prepared from rabbit, dog, human and guinea pig erythrocytes were transformed from echinocytes to discocytes within 15 min in the presence of 1 mM Mg-ATP at 25 C. In all species these Mg-ATP shape transformations were associated with a 30–45% decrease in the specific viscosity of the ghost suspensions. Mg-ATP induced a second transformation of discocytic ghosts to cup shape forms without a further decrease in viscosity. A considerable species variation in the rates of Mg-ATP dependent viscosity and shape changes and incorporation of32P into phosphatidylinositol-4′ phosphate (PIP), phosphatidylinositol-4′5′bisphosphate (PIP2) and especially PA form MG-[γ 32P]-ATP in ghosts was found. However, the rates of Mg-ATP dependent synthesis of PIP and PIP2 and shape and viscosity changes in each species were of the same magnitude. Ca2+ or neomycin strongly inhibited PIP labeling and Mg-ATP shape and viscosity changes in ghosts of the different species. Ca2+ or neomycin usually increased or had little effect on32P incorporation into PA and PIP2. The possibility that Mg-ATP-induced changes in erythrocyte membrane shape and deformability are dependent on increases in membrane PIP and PIP2 is discussed.  相似文献   

8.
Transient receptor potential cation channel subfamily M member 8 (TRPM8) is a Ca2+ non-selective ion channel implicated in a variety of pathological conditions, including cancer, inflammatory and neuropathic pain. In previous works we identified a family of chiral, highly hydrophobic β–lactam derivatives, and began to intuit a possible effect of the stereogenic centers on the antagonist activity. To investigate the influence of configuration on the TRPM8 antagonist properties, here we prepare and characterize four possible diastereoisomeric derivatives of 4-benzyl-1-[(3′-phenyl-2′-dibenzylamino)prop-1′-yl]-4-benzyloxycarbonyl-3-methyl-2-oxoazetidine. In microfluorography assays, all isomers were able to reduce the menthol-induced cell Ca2+ entry to larger or lesser extent. Potency follows the order 3R,4R,2′R > 3S,4S,2′R ≅ 3R,4R,2′S > 3S,4S,2′S, with the most potent diastereoisomer showing a half inhibitory concentration (IC50) in the low nanomolar range, confirmed by Patch-Clamp electrophysiology experiments. All four compounds display high receptor selectivity against other members of the TRP family. Furthermore, in primary cultures of rat dorsal root ganglion (DRG) neurons, the most potent diastereoisomers do not produce any alteration in neuronal excitability, indicating their high specificity for TRPM8 channels. Docking studies positioned these β-lactams at different subsites by the pore zone, suggesting a different mechanism than the known N-(3-aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)-benzamide (AMTB) antagonist.  相似文献   

9.
Transient receptor potential melastatin member 4 (TRPM4) encodes a Ca2+-activated, non-selective cation channel that is functionally expressed in several tissues, including the heart. Pathogenic mutants in TRPM4 have been reported in patients with inherited cardiac diseases, including conduction blockage and Brugada syndrome. Heterologous expression of mutant channels in cell lines indicates that these mutations can lead to an increase or decrease in TRPM4 expression and function at the cell surface. While the expression and clinical variant studies further stress the importance of TRPM4 in cardiac function, the cardiac electrophysiological phenotypes in Trpm4 knockdown mouse models remain incompletely characterized. To study the functional consequences of Trpm4 deletion on cardiac electrical activity in mice, we performed perforated-patch clamp and immunoblotting studies on isolated atrial and ventricular cardiac myocytes and surfaces, as well as on pseudo- and intracardiac ECGs, either in vivo or in Langendorff-perfused explanted mouse hearts. We observed that TRPM4 is expressed in atrial and ventricular cardiac myocytes and that deletion of Trpm4 unexpectedly reduces the peak Na+ currents in myocytes. Hearts from Trpm4−/− mice presented increased sensitivity towards mexiletine, a Na+ channel blocker, and slower intraventricular conduction, consistent with the reduction of the peak Na+ current observed in the isolated cardiac myocytes. This study suggests that TRPM4 expression impacts the Na+ current in murine cardiac myocytes and points towards a novel function of TRPM4 regulating the Nav1.5 function in murine cardiac myocytes.  相似文献   

10.
FTIR spectra are reported of CO2 and CO2/H2 on a silica-supported caesium-doped copper catalyst. Adsorption of CO2 on a “caesium”/silica surface resulted in the formation of CO2 and complexed CO species. Exposure of CO2 to a caesium-doped reduced copper catalyst produced not only these species but also two forms of adsorbed carboxylate giving bands at 1550, 1510, 1365 and 1345 cm−1. Reaction of carboxylate species with hydrogen at 388 K gave formate species on copper and caesium oxide in addition to methoxy groups associated with caesium oxide. Methoxy species were not detected on undoped copper catalyst suggesting that caesium may be a promoter for the methanol synthesis reaction. Methanol decomposition on a caesium-doped copper catalyst produced a small number of formate species on copper and caesium oxide. Methoxy groups on caesium oxide decomposed to CO and H2, and subsequent reaction between CO and adsorbed oxygen resulted in carboxylate formation. Methoxy species located at interfacial sites appeared to exhibit unusual adsorption properties.  相似文献   

11.
The Au/MnO x /TiO2 catalyst was used for the photocatalytic oxidation of carbon monoxide. The catalytic activity of Au/MnO x /TiO2 with low concentration of manganese (3–7 mol%) was much higher than that of Au/TiO2. The surface of Au/MnO x /TiO2 was characterized by XPS and Raman spectroscopy. While the main state of manganese in 13.8 mol% MnO x /TiO2 was Mn4+ species, Mn3+ was the dominant species in the samples with below 6.5 mol% manganese. Raman spectroscopy revealed that the interaction between the MnO x and TiO2 form Mn–O–Ti species in which the state of manganese was Mn3+. The Au particles also interacted with both MnO x and TiO2 to modify the surface of them. In the case of the Au species, low loading of manganese produced the metallic Au0 and perimeter interfacial Auδ+, whereas high loading showed the coexistence of three components which were metallic Au0, perimeter interfacial Auδ+, and oxidic Au3+. The catalytic active component was the metallic Au0 and perimeter interfacial Auδ+ species, which were dispersed on TiO2 and Mn3+/TiO2.  相似文献   

12.
Tumor microenvironments are often characterized by an increase in oxidative stress levels. We studied the response to oxidative stimulation in human primary (IGR39) or metastatic (IGR37) cell lines obtained from the same patient, performing patch-clamp recordings, intracellular calcium ([Ca2+]i) imaging, and RT-qPCR gene expression analysis. In IGR39 cells, chloramine-T (Chl-T) activated large K+ currents (KROS) that were partially sensitive to tetraethylammonium (TEA). A large fraction of KROS was inhibited by paxilline—a specific inhibitor of large-conductance Ca2+-activated BK channels. The TEA-insensitive component was inhibited by senicapoc—a specific inhibitor of the Ca2+-activated KCa3.1 channel. Both BK and KCa3.1 activation were mediated by an increase in [Ca2+]i induced by Chl-T. Both KROS and [Ca2+]i increase were inhibited by ACA and clotrimazole—two different inhibitors of the calcium-permeable TRPM2 channel. Surprisingly, IGR37 cells did not exhibit current increase upon the application of Chl-T. Expression analysis confirmed that the genes encoding BK, KCa3.1, and TRPM2 are much more expressed in IGR39 than in IGR37. The potassium currents and [Ca2+]i increase observed in response to the oxidizing agent strongly suggest that these three molecular entities play a major role in the progression of melanoma. Pharmacological targeting of either of these ion channels could be a new strategy to reduce the metastatic potential of melanoma cells, and could complement classical radio- or chemotherapeutic treatments.  相似文献   

13.
TRPM7 plays an important role in cellular Ca2+, Zn2+ and Mg2+ homeostasis. TRPM7 channels are abundantly expressed in ameloblasts and, in the absence of TRPM7, dental enamel is hypomineralized. The potential role of TRPM7 channels in Ca2+ transport during amelogenesis was investigated in the HAT-7 rat ameloblast cell line. The cells showed strong TRPM7 mRNA and protein expression. Characteristic TRPM7 transmembrane currents were observed, which increased in the absence of intracellular Mg2+ ([Mg2+]i), were reduced by elevated [Mg2+]i, and were inhibited by the TRPM7 inhibitors NS8593 and FTY720. Mibefradil evoked similar currents, which were suppressed by elevated [Mg2+]i, reducing extracellular pH stimulated transmembrane currents, which were inhibited by FTY720. Naltriben and mibefradil both evoked Ca2+ influx, which was further enhanced by the acidic intracellular conditions. The SOCE inhibitor BTP2 blocked Ca2+ entry induced by naltriben but not by mibefradil. Thus, in HAT-7 cells, TRPM7 may serves both as a potential modulator of Orai-dependent Ca2+ uptake and as an independent Ca2+ entry pathway sensitive to pH. Therefore, TRPM7 may contribute directly to transepithelial Ca2+ transport in amelogenesis.  相似文献   

14.
In this study, highly loaded CuO (65.2 wt%) on ZrO2 support was prepared by flame spray pyrolysis, and the effects of their particle sizes and ZrO2 crystallinity on CO2 hydrogenation to methanol were investigated. By varying the precursor feed rate (1–10 mL min−1), the crystallite size (3–7 nm) and the crystallinity of tetragonal ZrO2 were controlled. After H2 reduction at 300°C, the Cu species in the catalysts, prepared at the feed rate = 2–10 mL min−1, were converted to Cu particles (approximately 10–20 nm); however, the size and crystallinity of ZrO2 remained the same. The activity and selectivity of the catalysts prepared at the feed rate = 2–3 mL min−1 were higher than those of the catalysts prepared at the feed rates = 5–10 mL min−1, because the smaller ZrO2 particles in the former provided more surface to stabilize small Cu particles and from interfacial Cu-ZrO2 sites (active sites).  相似文献   

15.
The transient receptor potential (TRP) melastatin-like subfamily member 2 (TRPM2) is a non-selective calcium-permeable cation channel. It is expressed by many mammalian tissues, including bone marrow, spleen, lungs, heart, liver, neutrophils, and endothelial cells. The best-known mechanism of TRPM2 activation is related to the binding of ADP-ribose to the nudix-box sequence motif (NUDT9-H) in the C-terminal domain of the channel. In cells, the production of ADP-ribose is a result of increased oxidative stress. In the context of endothelial function, TRPM2-dependent calcium influx seems to be particularly interesting as it participates in the regulation of barrier function, cell death, cell migration, and angiogenesis. Any impairments of these functions may result in endothelial dysfunction observed in such conditions as atherosclerosis or hypertension. Thus, TRPM2 seems to be an attractive therapeutic target for the conditions connected with the increased production of reactive oxygen species. However, before the application of TRPM2 inhibitors will be possible, some issues need to be resolved. The main issues are the lack of specificity, poor membrane permeabilization, and low stability in in vivo conditions. The article aims to summarize the latest findings on a role of TRPM2 in endothelial cells. We also show some future perspectives for the application of TRPM2 inhibitors in cardiovascular system diseases.  相似文献   

16.
Ca2+ entry through Cav1.3 Ca2+ channels plays essential roles in diverse physiological events. We employed yeast-two-hybrid (Y2H) assays to mine novel proteins interacting with Cav1.3 and found Snapin2, a synaptic protein, as a partner interacting with the long carboxyl terminus (CTL) of rat Cav1.3L variant. Co-expression of Snapin with Cav1.3L/Cavβ32δ2 subunits increased the peak current density or amplitude by about 2-fold in HEK-293 cells and Xenopus oocytes, without affecting voltage-dependent gating properties and calcium-dependent inactivation. However, the Snapin up-regulation effect was not found for rat Cav1.3S containing a short CT (CTS) in which a Snapin interaction site in the CTL was deficient. Luminometry and electrophysiology studies uncovered that Snapin co-expression did not alter the membrane expression of HA tagged Cav1.3L but increased the slope of tail current amplitudes plotted against ON-gating currents, indicating that Snapin increases the opening probability of Cav1.3L. Taken together, our results strongly suggest that Snapin directly interacts with the CTL of Cav1.3L, leading to up-regulation of Cav1.3L channel activity via facilitating channel opening probability.  相似文献   

17.
Polyvinylamine (PVAm) was modified using a cross‐linking agent containing carriers piperazine (PIP). Attenuated total reflectance fourier transform infrared, elemental analyzer, and X‐ray diffraction were used to characterize the PIP‐modified PVAm. The PVAm–PIP/polysulfone (PS) composite membrane was developed by coating PVAm–PIP mixed solutions with different mass ratios of PIP/PVAm (mPIP/mPVAm) on the PS ultrafiltration membrane. The effects of mPIP/mPVAm (from 0.715 to 2.860) in the coating solutions and wet coating thickness on the gas performance of the PVAm–PIP/PS composite membrane were investigated. The PVAm–PIP/PS composite membrane prepared showed higher performance than other membranes reported in the literature due to the large increase of the introducing carrier concentration and low crystallinity. Moreover, the separation performance stability of the PVAm–PIP/PS composite membrane was investigated and no deterioration in the membrane permselectivity was observed. Finally, the economic evaluation of the membrane with the highest performance prepared was carried out. © 2012 American Institute of Chemical Engineers AIChE J, 59: 215–228, 2013  相似文献   

18.
The polyphosphoinositides fromTrypanosoma cruzi were isolated by preparative thin-layer chromatography (TLC) and identified. When myo-[3H]inositol was present in the culture medium for five days, analyses showed the presence of phosphatidylinositol (PI), lysophosphatidylinositol (lysoPI), phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2). Short-term incubation with32Pi led to higher percentages of incorporation into phosphatidylethanolamine (PE), lysophosphatidylethanolamine (lysoPE) and PI compared to the other glycerophospholipids. The phosphoinositides (PI, PIP and PIP2) contained a larger proportion of unsaturated than saturated fatty acids. High proportions of 18∶2 were found in the three phosphoinositides analyzed, whereas the major saturated fatty acid was 18∶0. Watersoluble inositol phosphates (IP, IP2 and IP3) were also identified.  相似文献   

19.
The cardiac Mg2+-sensitive, TRPM6, and TRPM7-like channels remain undefined, especially with the uncertainty regarding TRPM6 expression in cardiomyocytes. Additionally, their contribution to the cardiac action potential (AP) profile is unclear. Immunofluorescence assays showed the expression of the TRPM6 and TRPM7 proteins in isolated pig atrial and ventricular cardiomyocytes, of which the expression was modulated by incubation in extracellular divalent cation-free conditions. In patch clamp studies of cells dialyzed with solutions containing zero intracellular Mg2+ concentration ([Mg2+]i) to activate the Mg2+-sensitive channels, raising extracellular [Mg2+] ([Mg2+]o) from the 0.9-mM baseline to 7.2 mM prolonged the AP duration (APD). In contrast, no such effect was observed in cells dialyzed with physiological [Mg2+]i. Under voltage clamp, in cells dialyzed with zero [Mg2+]i, depolarizing ramps induced an outward-rectifying current, which was suppressed by raising [Mg2+]o and was absent in cells dialyzed with physiological [Mg2+]i. In cells dialyzed with physiological [Mg2+]i, raising [Mg2+]o decreased the L-type Ca2+ current and the total delayed-rectifier current but had no effect on the APD. These results suggest a co-expression of the TRPM6 and TRPM7 proteins in cardiomyocytes, which are therefore the molecular candidates for the native cardiac Mg2+-sensitive channels, and also suggest that the cardiac Mg2+-sensitive current shortens the APD, with potential implications in arrhythmogenesis.  相似文献   

20.
Molten carbonate-based membranes for CO2 capture have received attentions because of their high CO2 selectivity, potential energy-saving capability and environmental friendliness. Zn2+-modified Al2O3/carbonates membranes with the enhanced CO2 permeability have been developed in this work. Interfaces of LiAlO2 were formed on the surface of Al2O3 due to the carbonates incorporation. Microstructural and interfacial characterisation of the membrane revealed that the outermost LiAlO2 layer was due to the reactions between Li2CO3 and ZnAl2O4, resulting in the dissolution of ZnO in the molten carbonate. CO2 permeability of 0.5% ZnAl2O4/Al2O3/carbonates reached 9.12 × 10−12 mol.m−1s−1 Pa−1 at 700°C, higher than that of Al2O3/carbonates, because of the dissolved ZnO. With the increase of ZnAl2O4, CO2 permeability was decreased. The dissolved ZnO in the molten carbonates could enhance the ionic conductivity, whereas a higher amount of ZnO than its solubility will attenuate its effects on CO2 permeation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号