首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A superhard hydrogen-free amorphous diamond-like carbon (DLC) film was deposited by pulsed arc discharge using a carbon source accelerator in a vacuum of 2×10−4 Pa. The growth rate was about 15 nm/min and the optimum ion-plasma energy was about 70 eV. The impact of doping elements (Cu, Zr, Ti, Al, F(Cl), N) on the characteristics of DLC films deposited on metal and silicon substrates was studied aiming at the choice of the optimum coating for low friction couples. The microhardness of thick (≥20 μm) DLC films was studied by Knoop and Vickers indentations, medium thick DLC films (1–3 μm) were investigated using a ‘Fischerscope’, and Young's module of thin films (20–70 nm) was studied by laser induced surface acoustic waves. The bonds in DLC films were investigated by electron energy loss spectroscopy (EELS), X-ray excited Auger electron spectroscopy (XAES), and X-ray photoelectron spectroscopy (XPS). The adhesion of DLC films was defined by the scratch test and Rockwell indentation. The coefficient of friction of the Patinor DLC film was measured by a rubbing cylinders test and by a pin-on-disk test in laboratory air at about 20% humidity and room temperature. The microhardness of the Patinor DLC film was up to 100 GPa and the density of the film was 3.43–3.65 g/cm3. The specific wear rate of the Patinor DLC film is comparable to that of other carbon films.  相似文献   

2.
Poly- and nanocrystalline diamond films have been deposited using microwave plasma enhanced CVD with gas mixtures of x%CH4/15%H2/Ar (x = 0.5, 1, 3, and 5). After deposition the resulting films were exposed to a hydrogen plasma etching for 30 min. The hydrogen plasma produced preferential etching of non-diamond carbon on the surface of the samples and the development of steps and pits. Raman spectroscopy and X-ray photoelectron spectroscopy analyses on the etched films showed increased sp3/sp2 ratio and decreased surface oxygen. The etch mechanism proposed is regression of pre-existing steps and step flow.  相似文献   

3.
Hydrogen-free diamond-like carbon (DLC) films were deposited by a new surface-wave-sustained plasma physical vapor deposition (SWP-PVD) system in various conditions. Electron density was measured by a Langmuir probe; the film thickness and hardness were characterized using a surface profilometer and a nanoindenter, respectively. Surface morphology was investigated using an atomic force microscope (AFM). It is found that the electron density and deposition rate increase following the increase in microwave power, target voltage, or gas pressure. The typical electron density and deposition rate are about 1.87 × 1011–2.04 × 1012 cm 3 and 1.61–14.32 nm/min respectively. AFM images indicate that the grain sizes of the films change as the experimental parameters vary. The optical constants, refractive index n and extinction coefficient k, were obtained using an optical ellipsometry. With the increase in microwave power from 150 to 270 W, the extinction coefficient of DLC films increases from 0.05 to 0.27 while the refractive index decreases from 2.31 to 2.11.  相似文献   

4.
In this work, tetrahedral diamond-like carbon (DLC) films are deposited on Si, Ti/Si and Au/Si substrates by a new plasma deposition technique — filtered arc deposition (FAD). Their electron field emission characteristics and fluorescent displays of the films are tested using a diode structure. It is shown that the substrate can markedly influence the emission behavior of DLC films. An emission current of 0.1 μA is detected at electric field EDLC/Si=5.6 V/μm, EDLC/Au/Si=14.3 V/μm, and EDLC/Ti/Si=5.2 V/μm, respectively. At 14.3 V/μm, an emission current density JDLC/Si=15.2 μA/cm2, JDLC/Au/Si=0.4 μA/cm2, and JDLC/Ti/Si=175 μA/cm2 is achieved, respectively. It is believed that a thin TiC transition layer exists in the interface between the DLC film and Ti/Si substrate.  相似文献   

5.
Diamond-like carbon films were synthesized under atmospheric pressure (AP-DLC) and their gas barrier properties and hardness were measured. The AP-DLC films were uniformly obtained by RF-plasma CVD method at room temperature with a size of 450 mm2. The growth rate increased as a function of C2H2 concentration and the average growth rate was around 12 μm/min. The maximum deposition rate was ~ 1 μm/s, which is approximately 2000 times larger than that by low-pressure plasma CVD of 1–2 μm/h. The gas barrier properties of AP-DLC films, ~ 1 μm thick, were 5–10 times larger than those of uncoated PET substrates. The microhardness of AP-DLC films was around 3 GPa, measured by the nano-indentation method. The issue lies in the removal of macro-particles of the films to improve the microhardness and the surface roughness.In this paper, we report the physical properties of DLC films synthesized under atmospheric pressure by the radio-frequency CVD method. We also summarize a brief history of PET bottle coating by vacuum-DLC films, as well as that of the development of atmospheric pressure technology and related DLC films, focused on gas barrier properties and micro-hardness.  相似文献   

6.
A technique to coat hydrogen-free diamond-like carbon (DLC) films on polytetrafluoroethylene (PTFE) substrates has been developed by sputtering of a negatively biased graphite target in a mixture of argon and nitrogen plasma. The coated films were characterized by various methods to investigate their chemical, electronic features, and particularly their biomedical properties. DLC films produced by this method have up to 20% sp3 carbon bonds depending on the nitrogen concentration in the plasma. Raman spectroscopy revealed that, bond-disorder increases with nitrogen doping. The average grain size of DLC decreases in the nitrogen doped samples by almost 30%. The roughness of the uncoated PTFE substrate surfaces decreased dramatically from 660 nm to 170 nm after DLC coating. However, the nitrogen contents in the plasma have little effects on the roughness, the cluster size, and shapes. Electronic band gap of the samples decreases with adding nitrogen from ~ 2 eV in nitrogen-free samples to ~ 1 eV in nitrogenated samples. Lower adhesion and aggregation of platelets on PTFE surfaces coated with DLC-10% nitrogen and DLC-20% nitrogen have been observed while there is greater adhesion of platelets on DLC-30% nitrogen and DLC-40% nitrogen.  相似文献   

7.
Pulsed laser ablation of a graphite target was carried out by ArF excimer laser deposition at a laser wavelength of 193 nm and fluences of 10 and 20 J/cm2 to produce diamond-like carbon (DLC) films. DLC films were deposited on silicon and quartz substrates under 1 × 10? 6 Torr pressure at different temperatures from room temperature to 250 °C. The effect of temperature on the electrical and optical properties of the DLC films was studied. Laser Raman Spectroscopy (LRS) showed that the DLC band showed a slight increase to higher frequency with increasing film deposition temperature. Spectroscopic ellipsometry (SE) and ultraviolet–visible absorption spectroscopy showed that the optical band gap of the DLC films was 0.8–2 eV and decreased with increasing substrate temperature. These results were consistent with the electrical resistivity results, which gave values for the films in the range 1.0 × 104–2.8 × 105 Ω cm and which also decreased with deposition temperature. We conclude that at higher substrate deposition temperatures, DLC films show increasing graphitic characteristics yielding lower electrical resistivity and a smaller optical band gap.  相似文献   

8.
We introduce a simple, resist-free dry etch mask for producing patterns in diamond, both bulk and thin deposited films. Direct gallium ion beam exposure of the native diamond surface to doses as low as 1016 cm?2 forms a top surface hard mask resistant to both oxygen plasma chemical dry etching and, unexpectedly, argon plasma physical dry etching. Gallium implant hard masks of nominal 50 nm thickness demonstrate oxygen plasma etch resistance to over 450 nm depth, or 9:1 selectivity. The process offers significant advantages over direct ion milling of diamond including increased throughput due to separation of patterning and material removal steps, allowing both nanoscale patterning resolution as well as rapid masking of areas approaching millimeter scales. Retention of diamond properties in nanostructures formed by the technique is demonstrated by fabrication of specially shaped nanoindenter tips that can perform imprint pattern transfer at over 14 GPa pressure into gold and silicon surfaces. This resistless technique can be applied to curved and non-planar surfaces for a variety of potential applications requiring high resolution structuring of diamond coatings.  相似文献   

9.
The multi-layered structure of thin diamond-like carbon (DLC) films was investigated by X-ray reflectivity (XRR) analysis. Thin DLC films were deposited on Si substrate by RF plasma chemical vapor deposition (CVD) from acetylene source gas with short duration of plasma operation from 0.08 to 4.99 s. It was confirmed from XRR analysis that the thin DLC film on Si substrate had 3 layers consisting of a subsurface layer on the grown surface, a mixing layer at the interface to Si substrate, and a bulk-DLC layer sandwiched between the 2 layers. The 3 layers had been formed in 0.08 s at beginning of deposition with distinctive bulk-DLC layer of 1.7 nm thick already appeared due to extremely higher deposition rate only at the initial stage of CVD. The thickness of bulk-DLC layer increased with increasing CVD duration while both the mixing layer of higher density and the sub-surface layer of extremely low density continuously existed. By oxygen plasma etching, it was confirmed by XRR analysis that the sub-surface layer was clearly removed and another layer of lower density than the bulk DLC appeared.  相似文献   

10.
Diamond-like carbon (DLC) coatings were successfully deposited on carbon nanotube (CNT) films with CNT densities of 1 × 109/cm2, 3 × 109/cm2, and 7 × 109/cm2 by a radio frequency plasma-enhanced chemical vapor deposition (CVD). The new composite films consisting of CNT/DLC were synthesized to improve the mechanical properties of DLC coatings especially for toughness. To compare those of the CNT/DLC composite films, the deposition of a DLC coating on a silicon oxide substrate was also carried out. A dynamic ultra micro hardness tester and a ball-on-disk type friction tester were used to investigate the mechanical properties of the CNT/DLC composite films. A scanning electron microscopic (SEM) image of the indentation region of the CNT/DLC composite film showed a triangle shape of the indenter, however, chippings of the DLC coating were observed in the indentation region. This result suggests the improvement of the toughness of the CNT/DLC composite films. The elastic modulus and dynamic hardness of the CNT/DLC composite films decreased linearly with the increase of their CNT density. Friction coefficients of all the CNT/DLC composite films were close to that of the DLC coating.  相似文献   

11.
The microfabrication of Foturan® glass ceramic as a potential substrate material for micro-solid oxide fuel cells (micro-SOFC) was investigated. Foturan® was etched in 10% aqueous hydrofluoric (HF) acid solution at 25 °C with a linear rate of 22 ± 1.7 μm/min to create structures with an aspect ratio of 1:1 in 500 μm-thick Foturan® substrates for micro-SOFCs. The concentration of the HF etchant was found to influence the etching rate, whereas the UV-exposure time creating nuclei in the glass for subsequent crystallization of the amorphous Foturan® material had no significant influence on the etching rates. The surface roughness of the crystallized Foturan® was determined by the crystallite size in the order of 10–15 μm. Free-standing micro-SOFC membranes consisting of a thin film Pt cathode, an yttria-stabilized-zirconia electrolyte and a Pt anode were released by HF etching of the Foturan® substrate. An open-circuit voltage of 0.57 V and a maximum power density of 209 mW/cm2 at 550 °C were achieved.  相似文献   

12.
A spark plasma sintering (SPS) method was utilized for the novel production of diamond-like carbon (DLC) compacts. Two amorphous carbon powders with different particle sizes (45 μm and 24 nm diameter) were employed as starting materials for the sintering experiments. The carbon powders were sintered using a SPS system at various sintering temperatures and holding times. The structural properties of the sintered compacts were evaluated using X-ray diffraction (XRD) analysis and high-resolution transmission electron microscopy (HRTEM). Disk-shaped compacts were obtained by sintering the powder with a particle diameter of 45 μm, although the compacts were very brittle and easily broken. However, sintering of the 24 nm diameter powder particles at temperatures of 1473 to 1573 K with a holding time of 300 s led to the successful production of sintered compacts without breakage. Reflection peaks related to graphite structure were observed in XRD patterns of the compacts sintered from the 24 nm diameter particles. HRTEM analysis revealed that the compacts sintered at 1473 K with a holding time of 300 s had an amorphous structure and consisted of 34% sp3 carbon bonding. Evaluation of the structural properties indicated that sintered compacts with DLC structure could be created by the SPS method with 24 nm diameter amorphous carbon particles.  相似文献   

13.
Diamond-like carbon (DLC) films have been deposited at atmospheric pressure by microwave-induced microplasma for the first time. Typical precursor gas mixtures are 250 ppm of C2H2 in atmospheric pressure He. Chemically resistant DLC films result if the Si (100) or glass substrate is in close contact with the microplasma, typically at a standoff distance of 0.26 mm. The films deposited under this condition have been characterized by various spectroscopic techniques. The presence of sp3 CH bonds and ‘D’ and ‘G’ bands were observed from FTIR and Raman spectroscopy, respectively. The surface morphology has been derived from SEM and AFM and shows columnar growth with column diameters of approximately 100 nm. Likely due to the low energy of ions striking the surface, the hardness and Young's modulus for the films were found to be 1.5 ± 0.3 GPa and 60 ± 15 GPa respectively with a film thickness of 2 μm. The hypothesis that a high flux of low energy ions can replace energetic ion bombardment is examined by probing the plasma. Rapid deposition rates of 4–7 μm per minute suggest that the method may be scalable to continuous coating systems.  相似文献   

14.
In the present study, diamond-like carbon (DLC) films were prepared by bipolar plasma based ion implantation and deposition (PBII&D), and the structural and mechanical properties of the DLC films deposited on Si substrates were evaluated by Raman spectroscopy. In the PBII&D processing, the positive and negative pulse voltages were varied from 1 to 3 kV and from ? 1 to ? 15 kV, respectively. With an increase in the pulse voltages, the Raman G-peak position and I(D) / I(G) ratio increased, and the G-peak full width at half maximum (FWHM(G)) decreased, indicating graphitization of the DLC films. In the low wavenumber regime, the FWHM(G) increases when the G-peak shifts to higher wavenumbers, reaching a maximum value at around 1540 cm? 1, and then decreases. This behavior was due to the structural changes occurring in the DLC films with an increase in the wavenumber. DLC to polymer-like carbon (PLC) transition occurred in the low wavenumber regime, and DLC to graphite-like carbon (GLC) transition occurred in the high wavenumber regime. Further, two different trends were observed in the relationship between the mechanical properties (hardness, elastic modulus, and internal stress) of the DLC films and the FWHM(G), originating from the structural change from DLC to GLC and PLC.  相似文献   

15.
One-dimensional diamond nanostructures (diamond nanopillars) have been fabricated using nanocrystalline diamond films (NCD) as a starting material, and electron beam lithography (EBL) and reactive ion etching in an inductively coupled O2 plasma (ICP-RIE) as processing techniques. In a first step, the etch rates have been determined as a function of four major plasma parameters, namely the ICP power, the rf power applied to the substrate holder, the pressure, and the oxygen flow rate. These parameters have been varied in wide ranges. In order to get insight into the mechanisms of the etching process, etching experiments have been performed with unpatterned NCD films by varying the process times using rather short intervals. Finally, EBL has been applied prior to the etching to obtain one-dimensional pillars with diameters from 200 nm to 1 μm. Scanning electron microscopy has been employed to characterize the pillars. First results showed the process developed to be successful, and first examples will be presented.  相似文献   

16.
Two metal dopants were simultaneously added into a diamond-like carbon (DLC) matrix using a KrF pulsed laser system at room temperature with no post-processing. The nanometer thin films were fabricated from carbon source targets containing the two metals of interest, Ti and Ni, in atomic percentages 2.5%, 5%, 7.5% and 10% each. Films from carbon targets containing only 5% Ni or 5% Ti were also deposited for comparison against the dual-metal containing films. Microstructure analysis shows that each individual metal reacted independently and uniquely with carbon as confirmed by XPS and surface analysis shows the presence of TiC bonds and Ni0. Therefore, there was no reaction between Ti and Ni as metals confirmed by XPS. Through this independent interaction, a superposition of microstructural properties was obtained as if the metals were doped separately into DLC. The separate interactions of the two metals with carbon were important as they were able to play separate and different roles in enhancing the properties of DLC. In addition, TEM analysis confirmed a unique self-assembly state where the nickel ions converge into nanosized clusters of ~ 5 nm in diameter and predominantly oriented in a (200) direction. The resultant films were also extremely smooth with RMS roughness of about 0.1 nm, thus retaining the inherent smoothness of DLC films. The combined Ti/Ni films could be used as substrates to grow carbon nanotubes with controlled density which could be used as cold electron emitters. Thus, it is interesting to study the growth mechanism and microstructure of the composite films.  相似文献   

17.
ZnO nanoparticles suspended in poly(acrylic acid) (PAA) were deposited onto layer-by-layer (LBL) polyelectrolyte (PET) films fabricated from poly(allylamine hydrochloride) (PAH) and PAA by dip coating method. Effect of etching time and concentration of ZnO suspension on hydrophilicity of the LBL-PET films before and after UV irradiation was examined using water contact angle measurement. 2.0 M PAH/PAA solutions with a dipping speed of 3.0 cm/min provided stable LBL-PET films with thickness sufficient for HCl etching. Glass substrates with the etched LBL-PET film dipped into 0.2 wt.% ZnO suspension exhibited the contact angle of 10° after irradiated by UV for 60 min.  相似文献   

18.
We have deposited unhydrogenated diamond-like carbon (DLC) films on Si substrate by pulsed laser deposition using KrF excimer laser, and investigated the effects of atomic-hydrogen exposure on the structure and chemical bonding of the DLC films by photoelectron spectroscopy (PES) using synchrotron radiation and Raman spectroscopy. The fraction of sp3 bonds at the film surface, as evaluated from C1s spectra, increased at a substrate temperature of 400 °C by atomic-hydrogen exposure, whereas the sp3 fraction decreased at 700 °C with increasing exposure time. It was found that the sp3 fraction was higher at the surfaces than the subsurfaces of the films exposed to atomic hydrogen at both the temperatures. The Raman spectrum of the film exposed to atomic hydrogen at 400 °C showed that the clustering of sp2 carbon atoms progressed inside the film near the surface even at such a low temperature as 400 °C.  相似文献   

19.
A duplex plasma immersion ion implantation and deposition (PIIID) process, involving carbon ion implantation and diamond-like carbon (DLC) deposition, is proposed to modify the inner surface of a tube. In the research, samples of GCr15 bearing steel were placed inside a tube in the vacuum chamber. After the vacuum chamber was evacuated to a base pressure of 6 × 10 3 Pa, C2H2 gas was introduced into the chamber, and the tube was biased by a negative pulsed bias. Since a pulsed glow discharge (PGD) plasma can be formed by the bias, carbon ion implantation and DLC film deposition process can be obtained by biasing the tube with a high and low bias, respectively. To synthesize different DLC films, single PIIID processes employing a low voltage (several kV) PGD method and duplex PIIID processes combining the high (several tens kV) and low voltage PGD techniques were carried out. The as-synthesized films were characterized by Raman spectrum, nano-indentation, scratch, tribological and electrochemical tests. Raman results show that duplex DLC films were synthesized by this duplex PIIID process. In addition, compared with the single DLC film synthesized by the low voltage PGD process, the duplex DLC films can obtain a high wear and corrosion resistances. Furthermore, using this duplex PIIID method, batch treatment of outer-rings of the bearing was realized.  相似文献   

20.
At room temperature, we observe the self assembly of nanoclusters in an amorphous matrix using a vacuum deposition technique. Self-assembled ZnO nanoclusters embedded in hard diamond-like amorphous carbon thin films, deposited by high vacuum Filtered Cathodic Vacuum Arc (FCVA) technique at room temperature without post-processing, have been observed. A selective self assembly of metal and oxygen ions in a 3-element plasma was observed. XPS distinctly showed presence of ZnO and DLC-mixture in 5, 7 and 10 at.% Zn (in target) films while maintaining high sp3 content. This in turn improved the Young's modulus value of the ZnO nanoclusters embedded in DLC film (~ 220 GPa) compared to bulk ZnO (~ 110 GPa). Films with ZnO detected were observed to exhibit absorption edge at 377 nm monochromatic UV light emissions. This corresponded to a band gap value of about 3.30 eV. The emission with greatest intensity (after normalization) was detected from 10 at.% Zn (in target) film where presence of ZnO nanoclusters (~ 40 nm) in DLC matrix were confirmed by TEM. This showed that well-defined crystalline ZnO nanoclusters contributed to strong PL signal. Strong monochromatic emissions detected hinted that no defect states were present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号