首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supercritical fluid extraction from freeze-dried Eruca sativa leaves is assessed with the aim of studying the feasibility to obtain bioactive enriched fractions containing different classes of valuable compounds. Total extraction yields and compositions using pure CO2 and CO2 + selected co-solvents are compared. Overall extraction curves, fitted by the model of broken and intact cells developed by Sovová, are reported and the influence of the main parameters that affect the extraction process is analysed. The extract with the highest content in glucosinolates and phenols was collected at 30 MPa and 75 °C using 8% (w/w) of water with respect to the CO2 flow rate, whereas the fraction richest in lipids was obtained using 8% (w/w) of ethanol as co-solvent at 45 °C and 30 MPa. A process including a first step with supercritical CO2 extraction using water as co-solvent followed by a second step, where a fraction rich in lipids is extracted using ethanol as co-solvent, is proposed. SCCO2 results are compared with Soxhlet and other methods that combine organic solvents with ultrasounds.  相似文献   

2.
The possibility of using the tamarillo (Solanum betaceum (Cav.) Sendtn (syn. Cyphomandra betacea)) epicarp as source of compounds with antioxidant activity in cooked beef meat (CBM) was explored. Extracts from tamarillo by supercritical fluid extraction (SFE) and Soxhlet extraction (SE) were obtained. The SFE was performed using pure CO2 at different temperatures and pressures (40 and 50 °C; 10, 20 and 30 MPa) and CO2 added with ethanol (CO2/EtOH) as co-solvent (2, 5 and 8%, w/w). The SFE kinetics and mathematical modeling of the overall extraction curves (OEC) were also investigated. EtOH and hexane were used in the SE. The antioxidant activity (AA) of extracts was evaluated in CBM as well as the protection against lipid oxidation was determined by measuring lipid hydroperoxides (LHP) and thiobarbituric acid reactive species (TBARS). The extract obtained by SFE with CO2/EtOH (50 °C/30 MPa and 2% of EtOH) showed the highest AA. In SFE, the co-solvent addition improved considerably the AA and the extraction yield. The extracts obtained by SFE with CO2/EtOH showed a better AA compared with the synthetic antioxidant TBHQ. The highest yield values were achieved by SE with ethanol (7.7 ± 0.4%) and by SFE with 5% EtOH (1.9 ± 0.1%). The results indicate that extracts of tamarillo epicarp are a potential source of antioxidant compounds.  相似文献   

3.
With the goal of maximizing the extraction yield of phenolic compounds from pitanga leaves (Eugenia uniflora L.), a sequential extraction in fixed bed was carried out in three steps at 60 °C and 400 bar, using supercritical CO2 (non-polar) as solvent in a first step, followed by ethanol (polarity: 5.2) and water (polarity: 9.0) in a second and third steps, respectively. All extracts were evaluated for global extraction yield, concentration and yield of both polyphenols and total flavonoids and antioxidant activity by DPPH method (in terms of EC50). The nature of the solvent significantly influenced the process, since the extraction yield increased with solvent polarity. The aqueous extracts presented higher global extraction yield (22%), followed by ethanolic (16%) and supercritical extracts (5%). The study pointed out that the sequential extraction process is the most effective in terms of global extraction yield and yield of polyphenols and total flavonoids, because it produced the more concentrated extracts on phenolic compounds, since the supercritical ethanolic extract presented the highest phenolics content (240.5 mg GAE/g extract) and antioxidant capacity (EC50 = 9.15 μg/mL). The most volatile fraction from the supercritical extract, which is similar to the essential oils obtained by steam distillation or hydrodistillation, presented as major compounds the germacrenos D and B + bicyclogermacrene (40.75%), selina-1,3,7(11)-trien-8-one + selina-1,3,7(11)-trien-8-one epoxide (27.7%) and trans-caryophyllene (14.18%).  相似文献   

4.
Supercritical fluid extraction (SFE) was studied as an alternative technology in the pharmaceutical industry for the separation of α-tocopherol from gel and skin of Aloe vera and almond leaves. The influence of operating conditions was investigated on the recovery of supercritical carbon dioxide (SC-CO2) extraction of α-tocopherol from three-year old Aloe vera (Aloe barbadensis Miller) leaf gel. The obtained results were compared with the conventional Soxhlet extraction. Response surface methodology (RSM) was applied to optimize effective variables on the extracted recovery of α-tocopherol. The maximum α-tocopherol recovery of 53.41% from Aloe vera gel was obtained with employing RSM predicted optimal operating conditions of 32 MPa, 45.91 °C, 0.84 ml SC-CO2/min and 140 min for extraction. The α-tocopherol extraction yield for gel and skin of Aloe vera and almond leaves at these optimal operating conditions were obtained 1.53, 16.29 and 2.61 mg/100 g dry sample, respectively.  相似文献   

5.
Natural compounds with biological activity have recently attracted special interest in the agro-industry as sources of additives in nutraceutical food production and pharmaceutical industries. Herein, we evaluated extracts obtained from peach palm fruit (Bactris gasipaes) using supercritical carbon dioxide, in terms of yield, total phenolic content, total flavonoids, total carotenoids, and antioxidant activity by β-carotene bleaching method. Extractions were performed at 40, 50, and 60 °C and 100, 200, and 300 bar; additionally, Soxhlet (with petroleum ether) and methanol extraction were conducted. The results showed that supercritical CO2 allows obtaining extracts rich in carotenoids and, although it presents lower yield than conventional extraction (SOX), supercritical CO2 represents a technique with greater advantages. The best operation condition for supercritical extraction was 300 bar–40 °C, given that the highest concentration of carotenoids was obtained, without the yield being significantly different from that obtained with 300 bar–60 °C, this extract had antioxidant activity comparable to that of commercial caffeic acid.  相似文献   

6.
The supercritical CO2 extraction of E. globulus deciduous bark was carried out at different temperatures (40–60 °C), pressures (100–200 bar), and ethanol contents (0.0–5.0 wt. %) to study triterpenic acids (TTAs) recovery. A factorial design of experiments and response surface methodology were implemented to analyze the influence of these variables upon extraction and perform its optimization. The best conditions were 200 bar, 40 °C and 5% ethanol, for which the statistically validated regression models provided: extraction yield of 1.2% (wt.), TTAs concentration of 50%, which corresponds to TTAs yield of 5.1 g/kg of bark and a recovery of 79.2% in comparison to the Soxhlet value. The trends of the free and acetylated TTAs were very different, due to their distinct CO2-philic character caused by dissimilar polarities: the acetyl derivatives approached a plateau near 200 bar and 5% ethanol, while the free TTAs extraction always increased in the range of conditions studied.  相似文献   

7.
Near-supercritical and supercritical CO2 was used to extract low-molar-mass phenolics and lipophilic compounds from Pinus pinaster wood. Extraction of samples containing sapwood and knotwood was carried out at 10⿿25 MPa and 30⿿50 °C to assess the influence of the operational conditions on the yields of total extracts and phenolics, as well as on the radical scavenging capacity of extracts. The use of ethanol as a co-solvent increased both the extraction yields and the concentration of phenolics in extracts. Operating under selected conditions (25 MPa, 50 °C, 10% ethanol), the extraction yield accounted for 4.1 wt% of the oven-dry wood. The extracts contained up to 7.6 g of phenolic compounds (measured as gallic acid equivalents) per 100 g extract, and showed one third of the radical scavenging capacity of Trolox. Native resin acids accounted for about 24 g per 100 g extracts, whereas flavonoids, lignans, stilbenes and juvabiones were found at lower proportions.  相似文献   

8.
Melia azedarach L. is a plant with wide use in folk medicine since it contains many bioactive compounds of interest. The present study aimed to extract bioactive compounds from M. azedarach fruits by a sequential process in fixed bed using various solvent mixtures. Extractions were performed at 50 °C and 300 bar in four sequential steps using supercritical CO2 (scCO2), scCO2/ethanol, pure ethanol, and ethanol/water mixture as solvents, respectively. The efficacy of the extraction process was evaluated by extraction yield and kinetics, and analysis of extracts by: (1) thin layer chromatography (TLC), (2) phenolics content, (3) reduction of surface tension of water, (4) gas chromatography (GC–MS), (5) electrospray ionization mass spectrometry (ESI–MS) and (6) antiviral activity. The overall extraction yield reached 45% and TLC analysis showed extracts with different composition. extract obtained from CO2/ethanol mixture (SCEE) exhibited the greatest ability to reduce surface tension of water from 72.4 mN m−1 [1] of pure water to 26.9 mN m−1 of an aqueous solution of 40 g L−1. The highest phenolics contents were observed in both the hydroalcoholic extract and scCO2/ethanolic extract. Volatile oils were not detected in the supercritical extracts by GC–MS. MS analyses identified the fatty acids: linoleic, palmitic and myristic acid in the supercritical extract (SCE), and the phenolics: caffeic acid and malic acid in the other extracts. In addition, SCE and SCEE extracts showed significant inhibition percentage against Herpes Simplex Virus Type 1. The extraction process proposed in the present study produced extracts with significant potential for application in food and pharmaceutical industries.  相似文献   

9.
The knowledge of lipid composition in beer ingredients (malt and corn grits) and wort enables the quality control for final product. Since supercritical fluid extraction (SFE) is an efficient technique for preparing samples for analysis without the use of solvents, in this research Supercritical CO2 (SC–CO2) extraction was compared with the traditional Soxhlet one for a gravimetric determination of total lipids on malt and corn grits. The obtained extracts were then analyzed by HPLC-ELSD after TLC separation of triacylglycerols (TAGs) for lipids fingerprint. The extraction of total fats achieved by a 60-min run with pure CO2 at 65 MPa and 100 °C was 43% higher than that produced by Soxhlet performed for 9 h for malt. The extraction was intermediate for SFE at 60 and 80 °C. The recovery of the TAG obtained with SC–CO2 at 100 °C was statistically comparable with results from Soxhlet extraction.  相似文献   

10.
Ethanol modified supercritical carbon dioxide (SC-CO2) extraction of flavonoids from Momordica charantia L. fruits and its antioxidant activity were performed. The influences of parameters such as temperature, extraction time and pressure on the yield of flavonoids were investigated. The antioxidant activities of flavonoids were assessed by means of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay and β-carotene bleaching test. The experimental data obtained indicated that pressure, temperature and time had significant effect on the extraction yield. The optimum extraction conditions, determined by the 3D response surface and contour plots derived from the mathematical models, were as follows: extraction temperature 46 °C, pressure 33.4 MPa, and extraction time 53.2 min. Under these conditions, the experimental value was 15.47 mg/g, which was well matched with value predicted by the model. The antioxidant activity of flavonoids obtained by ethanol modified SC-CO2 extraction method had higher antioxidant activity than the flavonoids extracted by conventional solvent extraction (CSE) method. The DPPH radical-scavenging ability of flavonoids obtained by ethanol modified SC-CO2 extraction method reached to 96.14 ± 1.02%, equivalent to the clearance rate of ascorbic acid at 1.2 mg/mL. Results indicated that ethanol modified SC-CO2 extraction was a suitable approach for the selective extraction of flavonoids from M. charantia L.  相似文献   

11.
Echinacea species is provided as dietary supplements for various infectious and immune related disorders and has a potential role in cancer prevention. The aim of this study was to optimize the extraction of total flavonoids using different extraction methods and investigate the cytotoxic effects on various cancer cell lines (CaCo-2, MCF-7, A549, U87MG, and HeLa) and VERO (African green monkey) as a non-cancerous cell line. Box-Behnken statistical design was used to evaluate the effect of pressure (100–200 bar), temperature (40–80 °C) and ethanol as co-solvent (6–20 wt%) at a flow rate of 15 g/min for 60 min in supercritical CO2 extraction and the effect of temperature (60–100 °C), time (5–15 min) and power (300–900 W) in microwave-assisted extraction. Optimum extraction conditions were elicited as 300 bar, 80 °C and 13% co-solvent yielding 0.472 mg rutin equivalent total flavonoids/g extract in SC-CO2 extraction, whereas 60 °C, 10 min and 300 W yielded the highest (0.202 mg rutin equivalent) total flavonoids in microwave-assisted extraction. Additional trials with subcritical water (0.022 mg/g) and Soxhlet extraction with methanol (0.238 mg/g) yielded lower flavonoid contents. The exposures upto 50 μg/ml of extracts revealed no significant inhibition on the proliferation of both tested cancer cells and healthy VERO cells.  相似文献   

12.
The bioactive flavonoid compounds of Strobilanthes crispus (Pecah Kaca) leaves obtained by using supercritical carbon dioxide (SC-CO2) extraction were investigated and the obtained crude extract yields were compared in order to select the best operation parameters. Since carbon dioxide is a non-polar solvent, ethanol was used as co-solvent to increase the polarity of the fluid. The studied parameters were pressure (100, 150 and 200 bar), temperature (40, 50 and 60 °C) and dynamic extraction time (40, 60 and 80 min). The optimum extraction condition occurred at 200 bar, 50 °C and 60 min. Based on the mean value, pressure had dominant effect on the extraction yield. Apart from the optimum SFE conditions two other conditions namely at minimum (100 bar, 40 °C, 40 min) and maximum (200 bar, 60 °C, 80 min) levels of each studied parameters as control runs were analyzed by HPLC to determine the major bioactive flavonoid compounds from S. crispus. Under the optimum conditions eight flavonoid compounds were identified; they were (+)-catechin, (?)-epicatechin, rutin, myricetin, luteolin, apigenin, naringenin and kaempferol.  相似文献   

13.
The removal of total carbohydrates and phenolics from the hull of a new barley variety BT 584 using solid-liquid batch and aqueous pressurized fluid (ethanol or ionic liquid) extractions were evaluated. Using pressurized fluids, temperature was the most significant variable for the extraction of biocompounds from barley hull. The highest phenolics extraction (189.1 ± 3.1 mg/g hull) was obtained using pressurized aqueous ionic liquid while the highest carbohydrates extraction (450.3 ± 7.8 mg/g hull) was obtained using pressurized aqueous ethanol. The predicted solubility of ferulic acid and glucose in water, ionic liquid or carbonic acid, and the acid dissociation constant of the compounds studied allowed proposing an extraction mechanism based on biomass interaction with ionic species formed during pressurized fluid extraction. The anionic species facilitated removal of phenolics while the interaction of cationic/anionic species facilitated removal of carbohydrates from barley hull biomass.  相似文献   

14.
This work explored the potential of subcritical liquids and supercritical carbon dioxide (CO2) in the recovery of extracts containing phenolic compounds, antioxidants and anthocyanins from residues of blueberry (Vaccinium myrtillus L.) processing. Supercritical CO2 and pressurized liquids are alternatives to the use of toxic organic solvents or extraction methods that apply high temperatures. Blueberry is the fruit with the highest antioxidant and polyphenol content, which is present in both peel and pulp. In the extraction with pressurized liquids (PLE), water, ethanol and acetone were used at different proportions, with temperature, pressure and solvent flow rate kept constant at 40 °C, 20 MPa and 10 ml/min, respectively. The extracts were analyzed and the highest antioxidant activities and phenolic contents were found in the extracts obtained with pure ethanol and ethanol + water. The highest concentrations of anthocyanins were recovered with acidified water as solvent. In supercritical fluid extraction (SFE) with CO2, water, acidified water, and ethanol were used as modifiers, and the best condition for all functional components evaluated was SFE with 90% CO2, 5% water, and 5% ethanol. Sixteen anthocyanins were identified and quantified by ultra performance liquid chromatography (UPLC).  相似文献   

15.
Recovery of phytosterol from roselle (Hibiscus sabdariffa L.) seeds via supercritical carbon dioxide extraction modified with ethanol was investigated at pressures of 200–400 bar, temperatures from 40 to 80 °C and at supercritical fluid flow rates from 10 to 20 ml/min. It was found that an entrainer such as ethanol could enhance the solubility and extraction yield of roselle seed oil from the seed matrix, compared to values obtained using supercritical CO2. After a typical run (holding period of 30 min, continuous flow extraction of 3 h), the results indicate that the oil recovery was optimal with a recovery of 108.74% and a phytosterol composition of 7262.80 mg kg?1 at relatively low temperature of 40 °C, a high pressure of 400 bar and at a high supercritical fluid flow rate of 20 ml/min in the presence of 2 ml/min EtOH as entrainer. The solubility of roselle seed oil increased with temperature at the operating pressures of 200, 300 and 400 bar. Supercritical fluid extraction involved a short extraction time and the minimal usage of small amounts of entrainer in the CO2.  相似文献   

16.
In this study, the extraction of jojoba seed oil obtained from jojoba seed using both supercritical CO2 and supercritical CO2+ethanol mixtures was investigated. The recovery of jojoba seed oil was performed in a green and high-tech separation process. The extraction operating was carried out at operating pressures of 25, 35 and 45 MPa, operating temperatures of 343 and 363 K, supercritical fluid flow rates of 3.33 × 10−8, 6.67 × 10−8 and 13.33 × 10−8 m3 s−1, entrainer concentrations of 2, 4 and 8 vol.%, and average particle diameters of 4.1 × 10−4, 6.1 × 10−4, 8.6 × 10−4 and 1.2 × 10−3 m. It was found that a green chemical modifier such as ethanol could enhance the solubilities, initial extraction rate and extraction yield of jojoba seed oil from the seed matrix as compared to supercritical CO2. In addition, it was found that the solubility, the initial extraction rate and the extraction yield depended on operating pressure and operating temperature, entrainer concentration, average particle size and supercritical solvent flow rate. The solubility of jojoba seed oil and initial extraction rate increased with temperature at the operating pressures of 35 and 45 MPa and decreased with increasing temperature at the operating pressure of 25 MPa. Furthermore, supercritical fluid extraction involved short extraction time and minimal usage of small amounts entrainer to the CO2. About 80% of the total jojoba seed oil was extracted during the constant rate period at the pressure of 35 and 45 MPa.  相似文献   

17.
In this work, a comparison of Soxhlet extraction (LPSE–SOX), percolation (LPSE–PE) and pressurized liquid extraction (PLE) for the recovery of carotenoid-rich extracts from pressed palm fiber (PPF) was carried out in terms of yield, carotenoid profile and economic viability to evaluate the methods’ industrial applicability. An optimization study was performed for each extraction technique with ethanol at a solvent/feed ratio of 20. The independent variables were temperature (35–55 °C), pressure (0.1–8 MPa) and flow rate (1.6, 2.4 g/min). The results showed that the global extraction yield obtained using LPSE–SOX (96 ± 4 mg extract/g PPF d.b.) after 6 h was higher than that obtained using LPSE–PE (74 ± 5 mg extract/g PPF d.b., 35 °C, 2.4 g/min) or PLE (44 ± 3 mg extract/g PPF d.b., 55 °C, 4 MPa, 2.4 g/min) after dynamic extraction time of 17 min under optimized conditions. On the other hand, the carotenoid yield obtained using PLE (305 ± 18 μg α-carotene/g extract and 713 ± 46 μg β-carotene/g extract) was higher than the obtained by LPSE–SOX (142 ± 13 μg α-carotene/g extract and 317 ± 46 μg β-carotene/g extract). PLE technique showed the highest selectivity for carotenoids than LPSE techniques. The lowest cost of manufacturing (COM) were obtained for LPSE–PE and PLE with values of US$13.4 and US$29.2/kg extract for a 0.5 m3 vessel capacity.  相似文献   

18.
Leaves of Arrabidaea chica (Humb. Bonpl.) Verlot are rich in anthocyanins and have been used as a medicinal plant in the Amazon region. In order to obtain different extracts from this plant, a sequential extraction in fixed bed was carried out at 40 °C and 300 bar, using supercritical carbon dioxide (scCO2) in a first step, and a mixture containing CO2/ethanol/water at mass ratios of approximately 80/20/0, 80/14/6 and 80/10/10 in a second extraction step. The residue from the second step was extracted with water at 40 °C and atmospheric pressure. Ethanolic, aqueous and hydroalcoholic (70:30, v:v) extracts were also obtained by conventional extraction methods at atmospheric pressure. All extracts were analyzed for global extraction yield, total phenolic content, total flavonoids, and carajurin content. High performance liquid chromatography (HPLC) was used both to quantify carajurin, which is the main anthocyanin component of A. chica, and to monitor qualitatively two other anthocyanin pigments found in that plant. The extraction yield in the first step was only 0.65% using pure scCO2, but this extraction was highly selective to extract carajurin from the three main anthocyanins. The accumulated global yield of the two steps ranged from 3% when the solvent ratio (80/20/0) was used in the second step to about 50% when 6 or 10% water was used, showing the highest yield when the extraction was done with water. The highest contents of total phenolic compounds (178 mg GAE/g extract) and total flavonoids (373 mg EC/g extract) were found in the process performed with the extraction mixture (80/20/0), and the highest carajurin content was obtained in the ethanolic extracts.  相似文献   

19.
Mediterranean countries contribute highly on world peach production and tonnes of waste leaves are released due to pruning. The aim of this study was to investigate the utilization possibilities of the leaves by supercritical fluid extraction. A statistical design was used to evaluate the effect of temperature (40–80 °C), pressure (150–300 bar) and concentration of ethanol as co-solvent (6–20%) at a flow rate of 15 g/min and for a duration of 60 min. The most effective variables were found as pressure and co-solvent ratio (p < 0.005). Optimum extraction conditions were elicited as 60 °C, 150 bar and 6% co-solvent yielding a total phenol content of 79.92 mg GAE/g extract, EC50 value of 232.20 μg/ml and a radical scavenging activity of 53.25% which was higher than the value obtained by conventional solvent extraction method (32.23%). Consequently, Prunus persica L. leaves were found as a potential phenolic source for industrial applications.  相似文献   

20.
The reported work aimed at the optimization of operating conditions of the supercritical fluid extraction (SFE) of spent coffee grounds (SCG) using pure or modified CO2, with particular emphasis on oil enrichment with diterpenes like kahweol, cafestol and 16-O-methylcafestol. The analysis comprised the application of Box–Behnken design of experiments and response surface methodology, and involved three operating variables: pressure (140–190 bar), temperature (40–70 °C) and cosolvent (ethanol) addition (0–5 wt.%). The best conditions to maximize total extraction yield are 190 bar/55 °C/5 wt.% EtOH, leading to 11.97% (goil/100 gSCG). In terms of the concentration of diterpenic compounds in the supercritical extracts, the best operating conditions are 140 bar/40 °C/0 wt.% EtOH, providing 102.90 mg g−1oil. The measurement of extraction curves near optimized conditions (140 bar/55 °C/0 wt.% EtOH and 190 bar/55 °C/0 wt.% EtOH) confirmed the trends of the statistical analysis and revealed that SFE enhances diterpenes concentration by 212–410% at the expenses of reducing the extraction yield between 39% and 79% in comparison to n-hexane extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号