首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylmercury (MeHg) toxicity is a major environmental concern. In the aquatic reservoir, MeHg bioaccumulates along the food chain until it is consumed by riverine populations. There has been much interest in the neurotoxicity of MeHg due to recent environmental disasters. Studies have also addressed the implications of long-term MeHg exposure for humans. The central nervous system is particularly susceptible to the deleterious effects of MeHg, as evidenced by clinical symptoms and histopathological changes in poisoned humans. In vitro and in vivo studies have been crucial in deciphering the molecular mechanisms underlying MeHg-induced neurotoxicity. A collection of cellular and molecular alterations including cytokine release, oxidative stress, mitochondrial dysfunction, Ca2+ and glutamate dyshomeostasis, and cell death mechanisms are important consequences of brain cells exposure to MeHg. The purpose of this review is to organize an overview of the mercury cycle and MeHg poisoning events and to summarize data from cellular, animal, and human studies focusing on MeHg effects in neurons and glial cells. This review proposes an up-to-date compendium that will serve as a starting point for further studies and a consultation reference of published studies.  相似文献   

2.
Manganese neurotoxicity has been reported to cause a neurodegenerative disease known as parkinsonism. Previous reports have shown that the expression of the KH-type splicing regulatory protein (KHSRP), a nucleic acid-binding protein, and NLRP3 is increased upon Mn exposure. However, the relation between these two during Mn toxicity has not been fully deduced. The mouse neuroblastoma (N2a) and SD rats are treated with LPS and MnCl2 to evaluate the expression of KHSRP and NLRP3. Further, the effect of the NLRP3 inhibitor MCC950 is checked on the expression of NLRP3, KHSRP and pro-inflammatory markers (TNFα, IL-18 and IL-1β) as well as the caspase-1 enzyme. Our results demonstrated an increment in NLRP3 and KHSRP expression post-MnCl2 exposure in N2a cells and rat brain, while on the other hand with LPS exposure only NLRP3 expression levels were elevated and KHSRP was found to be unaffected. An increased expression of KHSRP, NLRP3, pro-inflammatory markers and the caspase-1 enzyme was observed to be inhibited with MCC950 treatment in MnCl2-exposed cells and rats. Manganese exposure induces NLRP3 and KHSRP expression to induce neuroinflammation, suggesting a correlation between both which functions in toxicity-related pathways. Furthermore, MCC950 treatment reversed the role of KHSRP from anti-inflammatory to pro-inflammatory.  相似文献   

3.
Arsenic is a key environmental toxicant having significant impacts on human health. Millions of people in developing countries such as Bangladesh, Mexico, Taiwan, and India are affected by arsenic contamination through groundwater. Environmental contamination of arsenic leads to leads to various types of cancers, coronary and neurological ailments in human. There are several sources of arsenic exposure such as drinking water, diet, wood preservatives, smoking, air and cosmetics, while, drinking water is the most explored route. Inorganic arsenic exhibits higher levels of toxicity compared its organic forms. Exposure to inorganic arsenic is known to cause major neurological effects such as cytotoxicity, chromosomal aberration, damage to cellular DNA and genotoxicity. On the other hand, long-term exposure to arsenic may cause neurobehavioral effects in the juvenile stage, which may have detrimental effects in the later stages of life. Thus, it is important to understand the toxicology and underlying molecular mechanism of arsenic which will help to mitigate its detrimental effects. The present review focuses on the epidemiology, and the toxic mechanisms responsible for arsenic induced neurobehavioral diseases, including strategies for its management from water, community and household premises. The review also provides a critical analysis of epigenetic and transgenerational modifications, mitochondrial oxidative stress, molecular mechanisms of arsenic-induced oxidative stress, and neuronal dysfunction.  相似文献   

4.
This report explores the available curative molecules directed against hepatocellular carcinoma (HCC). Limited efficiency as well as other drawbacks of existing molecules led to the search for promising potential alternatives. Understanding of the cell signaling mechanisms propelling carcinogenesis and driven by cell proliferation, invasion, and angiogenesis can offer valuable information for the investigation of efficient treatment strategies. The complexity of the mechanisms behind carcinogenesis inspires researchers to explore the ability of various biomolecules to target specific pathways. Natural components occurring mainly in food and medicinal plants, are considered an essential resource for discovering new and promising therapeutic molecules. Novel biomolecules normally have an advantage in terms of biosafety. They are also widely diverse and often possess potent antioxidant, anti-inflammatory, and anti-cancer properties. Based on quantitative structure–activity relationship studies, biomolecules can be used as templates for chemical modifications that improve efficiency, safety, and bioavailability. In this review, we focus on anti-HCC biomolecules that have their molecular targets partially or completely characterized as well as having anti-cancer molecular mechanisms that are fairly described.  相似文献   

5.
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase over-expressed in different solid cancers. In recent years, FAK has been recognized as a new target for the development of antitumor agents, useful to contrast tumor development and metastasis formation. To date, studies on the role of FAK and FAK inhibitors are of great interest for both pharmaceutical companies and academia. This review is focused on compounds able to block FAK with different potencies and with different mechanisms of action, that have appeared in the literature since 2017. Furthermore, new emerging PROTAC molecules have appeared in the literature. This summary could improve knowledge of new FAK inhibitors and provide information for future investigations, in particular, from a medicinal chemistry point of view.  相似文献   

6.
17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM’s biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. Moreover, this could explain, at least in part, the development of resistance and indicate an optimal therapeutic option. This review highlights the implications of TAM in breast cancer as well as the role of receptors/signal pathways recently suggested to be involved in the development of TAM resistance. G protein—coupled estrogen receptor, Androgen Receptor and Hedgehog signaling pathways are emerging as novel therapeutic targets and prognostic indicators for breast cancer, based on their ability to mediate estrogenic signaling in ERα-positive or -negative breast cancer.  相似文献   

7.
Methylmercury (MeHg) is a widely known environmental pollutant that causes severe neurotoxicity. MeHg-induced neurotoxicity depends on various cellular conditions, including differences in the characteristics of tissues and cells, exposure age (fetal, childhood, or adulthood), and exposure levels. Research has highlighted the importance of oxidative stress in the pathogenesis of MeHg-induced toxicity and the site- and cell-specific nature of MeHg-induced neurotoxicity. The cerebellar granule cells and deeper layer cerebrocortical neurons are vulnerable to MeHg. In contrast, the hippocampal neurons are resistant to MeHg, even at high mercury accumulation levels. This review summarizes the mechanisms underlying MeHg-mediated intracellular events that lead to site-specific neurotoxicity. Specifically, we discuss the mechanisms associated with the redox ability, neural outgrowth and synapse formation, cellular signaling pathways, epigenetics, and the inflammatory conditions of microglia.  相似文献   

8.
Membrane phospholipase D (PLD) is associated with numerous neuronal functions, such as axonal growth, synaptogenesis, formation of secretory vesicles, neurodegeneration, and apoptosis. PLD acts mainly on phosphatidylcholine, from which phosphatidic acid (PA) and choline are formed. In turn, PA is a key element of the PLD-dependent secondary messenger system. Changes in PLD activity are associated with the mechanism of action of olanzapine, an atypical antipsychotic. The aim of the present study was to assess the effect of short-term administration of the first-generation antipsychotic drugs haloperidol, chlorpromazine, and fluphenazine on membrane PLD activity in the rat brain. Animals were sacrificed for a time equal to the half-life of the antipsychotic drug in the brain, then the membranes in which PLD activity was determined were isolated from the tissue. The results indicate that only haloperidol in a higher dose increases the activity of phospholipase D. Such a mechanism of action of haloperidol has not been described previously. Induction of PLD activity by haloperidol may be related to its mechanism of cytotoxicity. The finding could justify the use of PLD inhibitors as protective drugs against the cytotoxicity of first-generation antipsychotic drugs like haloperidol.  相似文献   

9.
Methamphetamine (METH) is a highly addictive drug that induces irreversible damage to neuronal cells and pathological malfunction in the brain. Aromadendrin, isolated from the flowers of Chionanthus retusus, has been shown to have anti-inflammatory or anti-tumor activity. Nevertheless, it has been reported that METH exacerbates neurotoxicity by inducing endoplasmic reticulum (ER) stress via the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in neuronal cells. There is little evidence that aromadendrin protects cells from neurotoxicity induced by METH. In this study, we found that aromadendrin partially suppressed the METH-induced cell death in SH-SY5y cells without causing cytotoxicity. Aromadendrin regulated METH-induced ER stress by preserving the phosphorylation of the PI3K/Akt/mTOR signaling pathway in METH-exposed SH-SY5y cells. In addition, aromadendrin mitigated METH-induced autophagic and the apoptotic pathways in METH-exposed SH-SY5y cells. Mechanistic studies revealed that pre-treatment with aromadendrin restored the expression of anti-apoptotic proteins in METH-exposed conditions. The inhibitor assay confirmed that aromadendrin-mediated restoration of mTOR phosphorylation protected cells from autophagy and apoptosis in METH-exposed cells. Therefore, these findings suggest that aromadendrin relatively has a protective effect on SH-SY5y cells against autophagy and apoptosis induced by METH via regulation of ER stress and the PI3K/Akt/mTOR signaling pathway.  相似文献   

10.
冷欣夫  伍一军 《农药》1998,37(10):18-22
有机磷化合物(包括I型和Ⅱ型)对人和其它脊椎动物诱导迟发性神经毒性,日益引起人们的关切。此类化合物种类繁多,结构各异。那么,哪些可能产生迟发性神经毒性?本文就此问题论述了该类化合物的结构与迟发性神经毒性的关系。  相似文献   

11.
Endogenous and exogenous neurotoxins are important factors leading to neurodegenerative diseases. In the 1980s, the discovery that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) contributes to Parkinson’s disease (PD) symptoms led to new research investigations on neurotoxins. An abnormal metabolism of endogenous substances, such as condensation of bioamines with endogenous aldehydes, dopamine (DA) oxidation, and kynurenine pathway, can produce endogenous neurotoxins. Neurotoxins may damage the nervous system by inhibiting mitochondrial activity, increasing oxidative stress, increasing neuroinflammation, and up-regulating proteins related to cell death. This paper reviews the biological synthesis of various known endogenous neurotoxins and their toxic mechanisms.  相似文献   

12.
Xanthohumol (XH) is an important prenylated flavonoid that is found within the inflorescence of Humulus lupulus L. (Hop plant). XH is an important ingredient in beer and is considered a significant bioactive agent due to its diverse medicinal applications, which include anti-inflammatory, antimicrobial, antioxidant, immunomodulatory, antiviral, antifungal, antigenotoxic, antiangiogenic, and antimalarial effects as well as strong anticancer activity towards various types of cancer cells. XH acts as a wide ranging chemopreventive and anticancer agent, and its isomer, 8-prenylnaringenin, is a phytoestrogen with strong estrogenic activity. The present review focuses on the bioactivity of XH on various types of cancers and its pharmacokinetics. In this paper, we first highlight, in brief, the history and use of hops and then the chemistry and structure–activity relationship of XH. Lastly, we focus on its prominent effects and mechanisms of action on various cancers and its possible use in cancer prevention and treatment. Considering the limited number of available reviews on this subject, our goal is to provide a complete and detailed understanding of the anticancer effects of XH against different cancers.  相似文献   

13.
14.
Gardenamide A (GA) protects the rat retinal ganglion (RGC-5) cells against cell apoptosis induced by H2O2. The protective effect of GA was completely abrogated by the specific phosphoinositide 3-kinase (PI3K) inhibitor LY294002, and the specific protein kinase B (Akt) inhibitor Akt VIII respectively, indicating that the protective mechanism of GA is mediated by the PI3K/Akt signaling pathway. The specific extracellular signal-regulated kinase (ERK1/2) inhibitor PD98059 could not block the neuroprotection of GA. GA attenuated the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) induced by H2O2. Western blotting showed that GA promoted the phosphorylation of ERK1/2, Akt and endothelial nitric oxide synthase (eNOS), respectively, and effectively reversed the H2O2-inhibited phosphorylation of these three proteins. LY294002 completely inhibited the GA-activated phosphorylation of Akt, while only partially inhibiting eNOS. This evidence implies that eNOS may be activated directly by GA. PD98059 attenuated only partially the GA-induced phosphorylation of ERK1/2 with/without the presence of H2O2, indicating that GA may activate ERK1/2 directly. All these results put together confirm that GA protects RGC-5 cells from H2O2 insults via the activation of PI3K/Akt/eNOS signaling pathway. Whether the ERK1/2 signaling pathway is involved requires further investigations.  相似文献   

15.
Acrylamide is a commonly used industrial chemical that is known to be neurotoxic to mammals. However, its developmental toxicity is rarely assessed in mammalian models because of the cost and complexity involved. We used zebrafish to assess the neurotoxicity, developmental and behavioral toxicity of acrylamide. At 6 h post fertilization, zebrafish embryos were exposed to four concentrations of acrylamide (10, 30, 100, or 300 mg/L) in a medium for 114 h. Acrylamide caused developmental toxicity characterized by yolk retention, scoliosis, swim bladder deficiency, and curvature of the body. Acrylamide also impaired locomotor activity, which was measured as swimming speed and distance traveled. In addition, treatment with 100 mg/L acrylamide shortened the width of the brain and spinal cord, indicating neuronal toxicity. In summary, acrylamide induces developmental toxicity and neurotoxicity in zebrafish. This can be used to study acrylamide neurotoxicity in a rapid and cost-efficient manner.  相似文献   

16.
The human body is highly complex and comprises a variety of living cells and extracellular material, which forms tissues, organs, and organ systems. Human cells tend to turn over readily to maintain homeostasis in tissues. However, postmitotic nerve cells exceptionally have an ability to regenerate and be sustained for the entire life of an individual, to safeguard the physiological functioning of the central nervous system. For efficient functioning of the CNS, neuronal death is essential, but extreme loss of neurons diminishes the functioning of the nervous system and leads to the onset of neurodegenerative diseases. Neurodegenerative diseases range from acute to chronic severe life-altering conditions like Parkinson’s disease and Alzheimer’s disease. Millions of individuals worldwide are suffering from neurodegenerative disorders with little or negligible treatment available, thereby leading to a decline in their quality of life. Neuropathological studies have identified a series of factors that explain the etiology of neuronal degradation and its progression in neurodegenerative disease. The onset of neurological diseases depends on a combination of factors that causes a disruption of neurons, such as environmental, biological, physiological, and genetic factors. The current review highlights some of the major pathological factors responsible for neuronal degradation, such as oxidative stress, cell death, and neuroinflammation. All these factors have been described in detail to enhance the understanding of their mechanisms and target them for disease management.  相似文献   

17.
Immunotherapy is a milestone in the treatment of poor-prognosis pediatric acute lymphoblastic leukemia (ALL) and is expected to improve treatment outcomes and reduce doses of conventional chemotherapy without compromising the effectiveness of the therapy. However, both chemotherapy and immunotherapy cause side effects, including neurological ones. Acute neurological complications occur in 3.6–11% of children treated for ALL. The most neurotoxical chemotherapeutics are L-asparaginase (L-ASP), methotrexate (MTX), vincristine (VCR), and nelarabine (Ara-G). Neurotoxicity associated with methotrexate (MTX-NT) occurs in 3–7% of children treated for ALL and is characterized by seizures, stroke-like symptoms, speech disturbances, and encephalopathy. Recent studies indicate that specific polymorphisms in genes related to neurogenesis may have a predisposition to MTX toxicity. One of the most common complications associated with CAR T-cell therapy is immune effector cell-associated neurotoxicity syndrome (ICANS). Mechanisms of neurotoxicity in CAR T-cell therapy are still unknown and may be due to disruption of the blood–brain barrier and the effects of elevated cytokine levels on the central nervous system (CNS). In this review, we present an analysis of the current knowledge on the mechanisms of neurotoxicity of standard chemotherapy and the targeted therapy in children with ALL.  相似文献   

18.
Primary cutaneous lymphomas are heterogenous lymphoproliferative disorders. Some patients show rapid progression and the need for treatment of advanced disease is still unmet. The frequency of each subtype of cutaneous lymphoma varies among different ethnic groups, as do the medical systems found in different countries. It is important to know the differences in clinical guidelines in different areas of the world. Although current monochemotherapy with gemcitabine or pegylated liposomal doxorubicin is temporarily effective for mycosis funogides (MF) and Sézary syndrome (SS)—representative types of cutaneous lymphomas—the duration of response is usually limited. Therefore, treatment strategies targeting tumor-specific molecules have been developed. Molecular targets for MS/SS are currently CD30, CCR4, CD25, CD52, and histone deacetylases, most of which are surface molecules specifically expressed on tumor cells. As a result of advances in research techniques, different kinds of genomic alterations in MF/SS have been revealed. Molecular targets for MS/SS in the near future would be CD158k, JAK, PIK3, the mammalian target of rapamycin, and microRNAs, most of which mediate intracellular signaling pathways. Personalized therapy based on the detection of the genetic signatures of tumors and inhibition of the most suitable target molecules constitutes a future treatment strategy for MF/SS.  相似文献   

19.
20.
Irisin, the circulating peptide originating from fibronectin type III domain-containing protein 5 (FNDC5), is mainly expressed by muscle fibers under peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) control during exercise. In addition to several beneficial effects on health, physical activity positively affects nervous system functioning, particularly the hippocampus, resulting in amelioration of cognition impairments. Recently, FNDC5/irisin detection in hippocampal neurons and the presence of irisin in the cerebrospinal fluid opened a new intriguing chapter in irisin history. Interestingly, in the hippocampus of mice, exercise increases FNDC5 levels and upregulates brain-derived neurotrophic factor (BDNF) expression. BDNF, displaying neuroprotection and anti-inflammatory effects, is mainly produced by microglia and astrocytes. In this review, we discuss how these glial cells can morphologically and functionally switch during neuroinflammation by modulating the expression of a plethora of neuroprotective or neurotoxic factors. We also focus on studies investigating the irisin role in neurodegenerative diseases (ND). The emerging involvement of irisin as a mediator of the multiple positive effects of exercise on the brain needs further studies to better deepen this issue and the potential use in therapeutic approaches for neuroinflammation and ND.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号