首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subcritical water extraction (SWE) of phenolic compounds from pomegranate seed residues (PSR) was performed. Total phenolic content (TPC) and antioxidant capacities of the extracts obtained at different temperatures were determined, and the individual antioxidant capacities were evaluated by coupling high performance liquid chromatography with ABTS radical reaction system (HPLC–ABTS+). The results showed that the optimum extraction time was 30 min, solid to water ratio was 1:40, and the highest TPC was obtained at 220 °C. The effect of extraction temperature on TPC was significant (p < 0.05), and TPC ranged from 651.7 to 4854.7 (mg/100 g DW) between 100 °C and 220 °C. HPLC–ABTS+ profiles revealed that nine compounds had antioxidant activity. Furthermore, the formation of Maillard reaction products during SWE was investigated, and the content of 5-hydroxymethylfurfural (5-HMF) was determined. The comparative study indicated that SWE was a promising technique for preparation of PSR phenolics.  相似文献   

2.
Carob pulp kibbles, a by-product of carob been gum production, was studied as a source of bioactive agents. Firstly, the carob kibbles were submitted to an aqueous extraction to extract sugars, and supercritical fluid extraction (SFE) was applied to the solid residue of that aqueous extraction, by using compressed carbon dioxide (SC-CO2) as the solvent and a mixture of ethanol and water (80:20, v/v) as a co-solvent. Pressure and temperature were studied in the ranges 15–22 MPa, and 40–70 °C. Particle diameter, and co-solvent percentage in ranges of 0.27–1.07 mm, and 0–12.4%, respectively, were also studied, as well as the flow rate of SC-CO2 between 0.28 and 0.85 kg h−1, corresponding, respectively, to 0.0062 and 0.0210 cm s−1 of superficial velocity. The extracts were characterised in terms of antioxidant capacity by DPPH method, and total phenolics content by the Folin–Ciocalteu method. The central composite non-factorial design was used to optimise the extraction conditions, using the Statistica, version 6 software (Statsoft). The best results, in terms of yield and antioxidant capacity, were found at 22 MPa, 40 °C, 0.27 mm particle size, about 12.4% of co-solvent and a flow rate of 0.29 kg h−1 of SC-CO2. The phenolics profile of the extracts obtained at these conditions was qualitatively evaluated by HPLC-DAD. The solid residue of the supercritical extraction was also studied showing to be a dietary fiber, which can be compared to Caromax™, a carob fiber commercialised by Nutrinova Inc.  相似文献   

3.
The objective of this work was to determine the economic feasibility of large-scale operations of supercritical fluid extraction (SFE) for the recovery of phenolics using grape bagasse from Pisco residues. Experimental data were used to estimate the extraction kinetic parameters, as well as the cost of manufacturing the extracts. Experimental data were obtained using supercritical CO2 containing 10% ethanol (w/w) at 313 K and 20–35 MPa. The supercritical CO2/ethanol extraction process produced extracts with higher concentrations of phenolics than extracts produced using conventional techniques. The compounds identified in the extracts were syringic, vanillic, gallic, p-hydroxybenzoic, protocatechuic and p-coumaric acids, as well as quercetin. An evaluation of the economics of the process indicated the feasibility of an industrial SFE plant with a capacity of 0.5 m3 for producing an extract with an expected phenolics concentration of approximately 23 g/kg of extract at an estimated cost of manufacturing of US$ 133.16/kg.  相似文献   

4.
Melia azedarach L. is a plant with wide use in folk medicine since it contains many bioactive compounds of interest. The present study aimed to extract bioactive compounds from M. azedarach fruits by a sequential process in fixed bed using various solvent mixtures. Extractions were performed at 50 °C and 300 bar in four sequential steps using supercritical CO2 (scCO2), scCO2/ethanol, pure ethanol, and ethanol/water mixture as solvents, respectively. The efficacy of the extraction process was evaluated by extraction yield and kinetics, and analysis of extracts by: (1) thin layer chromatography (TLC), (2) phenolics content, (3) reduction of surface tension of water, (4) gas chromatography (GC–MS), (5) electrospray ionization mass spectrometry (ESI–MS) and (6) antiviral activity. The overall extraction yield reached 45% and TLC analysis showed extracts with different composition. extract obtained from CO2/ethanol mixture (SCEE) exhibited the greatest ability to reduce surface tension of water from 72.4 mN m−1 [1] of pure water to 26.9 mN m−1 of an aqueous solution of 40 g L−1. The highest phenolics contents were observed in both the hydroalcoholic extract and scCO2/ethanolic extract. Volatile oils were not detected in the supercritical extracts by GC–MS. MS analyses identified the fatty acids: linoleic, palmitic and myristic acid in the supercritical extract (SCE), and the phenolics: caffeic acid and malic acid in the other extracts. In addition, SCE and SCEE extracts showed significant inhibition percentage against Herpes Simplex Virus Type 1. The extraction process proposed in the present study produced extracts with significant potential for application in food and pharmaceutical industries.  相似文献   

5.
The low-quality black tea was extracted at 27 different conditions using a lab-scale supercritical fluid extraction system according to four factor, three level Box–Behnken design [pressure (150–450 bar), temperature (40–80 °C), modifier flow rate (0.5–1.0 ml/min), and ethanol concentration in aqueous solution (75–100%)] at constant CO2 flow rate (2 l/min). Response surface methodology was used in order to optimize the extraction conditions for obtaining minimum caffeine and maximum phenolic profiles of the decaffeinated black tea. The R2 values for caffeine and phenolics were 99.5 and 96.6%, respectively. The lowest caffeine and the highest phenolics were obtained at following conditions [pressure (300 bar), temperature (53 °C), modifier flow rate (0.70 ml/min), and ethanol concentration (87.5%)] for 1 h. Using these conditions, the average loss of caffeine and phenolics in the decaffeinated tea were 99.8 and 3.3%, respectively. The present work suggests that optimum extraction conditions found can be applied for a pilot or large-scale production of decaffeinated black tea.  相似文献   

6.
The present study was carried out to explore the potential effects of multi-walled carbon nanotubes (MWCNTs) on callus induction and secondary metabolism in Satureja khuzestanica. Leaf segments were aseptically cultured in B5 basal medium with different MWCNTs concentrations (0, 25, 50, 100, 250 and 500 μg ml−1). The calli morphogenic responses were measured and the contents of phenolics, flavonoids, rosmarinic acid (RA), caffeic acid (CA), and the activity of polyphenol oxidase (PPO), l-phenylalanine ammonia-lyase (PAL) and peroxidase (POD) were quantified. Moreover, antioxidant activities of calli extract were assayed. Calli growth improved significantly with the increase of MWCNTs concentration, peaked at 50 μg ml−1, and then followed a rapid decrease at 500 μg ml−1. However, metabolic effects observed following exposure to MWCNTs particularly at 100 μg ml−1 tended to be more pronounced than all other treatments, exhibiting significant induction of antioxidant activity with the lowest IC50 value. Maximum oxidative stress index (H2O2) and the highest PPO and POD activities were observed on the media treated with 500 μg ml−1 MWCNTs. Our findings suggest for the first time that use of MWCNTs at specific levels could act as a novel elicitor for in vitro biosynthesis of valuable secondary metabolites and antioxidant drugs.  相似文献   

7.
The extraction of polyphenol compounds from jatoba (Hymenaea courbaril L. var stilbocarpa) bark using supercritical fluid extraction (SFE) with CO2 and cosolvents has been investigated. Among the solvent systems studied, SFE using CO2 and water (9:1, v/v), at 323 K and 35 MPa, presented the best results, with extract yield of 24%, and with high antioxidant activity (IC50 of 0.2 mg/cm3). This solvent system was used to determine global yield isotherms, which were built at 323 and 333 K, and 15, 25, and 35 MPa, using a second lot of jatoba. The highest yield was 11.5% at 15 MPa and 323 K, with maximum total phenolic compounds (TPC) of 335.00 mg TAE/g extract (d.b.) and total tannins content of 1.8 g/100 g raw material. A kinetic experiment was performed using optimized conditions, yielding 18% extract, and the kinetic parameters were used to scale-up the process from laboratory to pilot scale. Chemical analyses showed high content of phenolic compounds in the extracts of jatoba bark mostly due to the presence of procyanidins.  相似文献   

8.
Near-supercritical and supercritical CO2 was used to extract low-molar-mass phenolics and lipophilic compounds from Pinus pinaster wood. Extraction of samples containing sapwood and knotwood was carried out at 10⿿25 MPa and 30⿿50 °C to assess the influence of the operational conditions on the yields of total extracts and phenolics, as well as on the radical scavenging capacity of extracts. The use of ethanol as a co-solvent increased both the extraction yields and the concentration of phenolics in extracts. Operating under selected conditions (25 MPa, 50 °C, 10% ethanol), the extraction yield accounted for 4.1 wt% of the oven-dry wood. The extracts contained up to 7.6 g of phenolic compounds (measured as gallic acid equivalents) per 100 g extract, and showed one third of the radical scavenging capacity of Trolox. Native resin acids accounted for about 24 g per 100 g extracts, whereas flavonoids, lignans, stilbenes and juvabiones were found at lower proportions.  相似文献   

9.
The objective of this study was to select a variety of pepper with high concentration of capsaicin and subject it to supercritical fluid extraction (SFE), in order to determine the best conditions of temperature (40, 50 and 60 °C) and pressure (15, 25 and 35 MPa) in terms of global yield (X0) and capsaicinoids content of the extracts. The influence of drying process (freeze and oven drying) on X0, capsaicin (C) and dihydrocapsaicin (DHC) contents and total phenolics was also analyzed. Capsicum frutescens showed the highest levels of capsaicinoids (1516 μg/g fresh fruit). For the responses C and DHC, the extraction conditions of 15 MPa and 40 °C provided the highest concentrations (C ⿿ 42 mg/g extract and DHC ⿿ 18.5 mg/g extract). The freeze drying process resulted in extracts with the highest concentration of capsaicinoids (61 mg/g extract), but in contrast, the phenolics were less susceptible to different drying processes, with a mean concentration of 35 mg GAE/g extract. The kinetics experiments indicated that the extraction rate of oleoresin was slightly slower than that of capsaicinoids at the operation conditions (40 °C and 15 MPa).  相似文献   

10.
With the goal of maximizing the extraction yield of phenolic compounds from pitanga leaves (Eugenia uniflora L.), a sequential extraction in fixed bed was carried out in three steps at 60 °C and 400 bar, using supercritical CO2 (non-polar) as solvent in a first step, followed by ethanol (polarity: 5.2) and water (polarity: 9.0) in a second and third steps, respectively. All extracts were evaluated for global extraction yield, concentration and yield of both polyphenols and total flavonoids and antioxidant activity by DPPH method (in terms of EC50). The nature of the solvent significantly influenced the process, since the extraction yield increased with solvent polarity. The aqueous extracts presented higher global extraction yield (22%), followed by ethanolic (16%) and supercritical extracts (5%). The study pointed out that the sequential extraction process is the most effective in terms of global extraction yield and yield of polyphenols and total flavonoids, because it produced the more concentrated extracts on phenolic compounds, since the supercritical ethanolic extract presented the highest phenolics content (240.5 mg GAE/g extract) and antioxidant capacity (EC50 = 9.15 μg/mL). The most volatile fraction from the supercritical extract, which is similar to the essential oils obtained by steam distillation or hydrodistillation, presented as major compounds the germacrenos D and B + bicyclogermacrene (40.75%), selina-1,3,7(11)-trien-8-one + selina-1,3,7(11)-trien-8-one epoxide (27.7%) and trans-caryophyllene (14.18%).  相似文献   

11.
Multi-stage countercurrent extraction (MCE) as a novel extraction technique was used to extract antioxidants from Ginkgo biloba leaves. Orthogonal array design (OAD) was employed to optimize the ratio of 60% ethanol to raw material (8–16 mL/g), extraction time (30–60 min) and extraction temperature (60–80 °C) to obtain a high yield of antioxidants from G. biloba leaves by MCE. The optimum conditions were a ratio of 60% ethanol to raw material of 16 mL/g and extraction time of 30 min at 80 °C. Under these conditions, the yields of flavonoids and total phenolics were 1.74% and 2.42%, respectively, and DPPH radicals scavenging activity of the extract was 89.97%. Compared with heat-reflux extraction, MCE had obvious advantages of less extraction time and lower solvent and energy consumption. It may be used as a promising technique for the extraction of bioactive compounds from plant materials.  相似文献   

12.
In this work, Al2O3 self-flowing castables (SFCs) were produced based on various cement contents. The SFCs were sintered at 1273 K, 1573 K and 1773 K and the exhibited properties were experimentally determined. Among the properties determined in this work are bulk density (BD), apparent porosity (AP), water absorption (WA), cold crushing strength (CCS), modulus of rupture (MOR) and fracture toughness (KIC). It is found that additions of 5% cement lead to SFCs with maximum MOR and KIC values after firing at 1773 K. Firing at 1573 K leads to a reduction in both, MOR and KIC. In SFC containing 3% cement, maximum KIC values of 3.53 MPa m1/2 were achieved after firing at 1573 K. In the low cement SFCs (1 wt%) after firing at 1773 K the exhibited KIC values were below those obtained in either the SFC-3 or SFC-5, but they were significantly high (3.43 MPa m1/2).  相似文献   

13.
The influence of sintering temperature, holding time and pressure condition on densification and mechanical properties of bulk titanium carbide (TiC) fabricated by SPS sintering has been systematically investigated. Experimental data demonstrated that relative density and Vickers hardness (HV) increase with sintering temperature and holding time, but fracture toughness (KIC) was not significantly influenced by sintering parameters. The HV and relative density of samples consolidated by SPS technique at 1600 °C for 5 min under 50 MPa pressure (applied entire sintering cycle) reached 30.31 ± 2.23 GPa and 99.90%, respectively. HV values of ~24–30 GPa and KIC of ~3.7–5 MPa m1/2 were obtained in all bulk samples with relative densities of 95.61–99.90% when fabricated under various conditions presented above, without abnormal grain growth. More pronounced effects of pressure condition on grain growth (promoted by grain-boundary diffusion) than on densification were observed. The relationship of fracture toughness and fracture mode is also discussed.  相似文献   

14.
Ethanol modified supercritical carbon dioxide (SC-CO2) extraction of flavonoids from Momordica charantia L. fruits and its antioxidant activity were performed. The influences of parameters such as temperature, extraction time and pressure on the yield of flavonoids were investigated. The antioxidant activities of flavonoids were assessed by means of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay and β-carotene bleaching test. The experimental data obtained indicated that pressure, temperature and time had significant effect on the extraction yield. The optimum extraction conditions, determined by the 3D response surface and contour plots derived from the mathematical models, were as follows: extraction temperature 46 °C, pressure 33.4 MPa, and extraction time 53.2 min. Under these conditions, the experimental value was 15.47 mg/g, which was well matched with value predicted by the model. The antioxidant activity of flavonoids obtained by ethanol modified SC-CO2 extraction method had higher antioxidant activity than the flavonoids extracted by conventional solvent extraction (CSE) method. The DPPH radical-scavenging ability of flavonoids obtained by ethanol modified SC-CO2 extraction method reached to 96.14 ± 1.02%, equivalent to the clearance rate of ascorbic acid at 1.2 mg/mL. Results indicated that ethanol modified SC-CO2 extraction was a suitable approach for the selective extraction of flavonoids from M. charantia L.  相似文献   

15.
The removal of total carbohydrates and phenolics from the hull of a new barley variety BT 584 using solid-liquid batch and aqueous pressurized fluid (ethanol or ionic liquid) extractions were evaluated. Using pressurized fluids, temperature was the most significant variable for the extraction of biocompounds from barley hull. The highest phenolics extraction (189.1 ± 3.1 mg/g hull) was obtained using pressurized aqueous ionic liquid while the highest carbohydrates extraction (450.3 ± 7.8 mg/g hull) was obtained using pressurized aqueous ethanol. The predicted solubility of ferulic acid and glucose in water, ionic liquid or carbonic acid, and the acid dissociation constant of the compounds studied allowed proposing an extraction mechanism based on biomass interaction with ionic species formed during pressurized fluid extraction. The anionic species facilitated removal of phenolics while the interaction of cationic/anionic species facilitated removal of carbohydrates from barley hull biomass.  相似文献   

16.
Plates of Al2O3–YSZ and Al2O3–YAG eutectic composition with a thickness from 0.1 to 1 mm were prepared by directional solidification using a diode laser stack. The melt processed regions of plates exhibited colony microstructure consisting of finely dispersed phases. Due to the curved shape of the melted pool, the growth rate depends on the distance to the surface plate, decreasing from top to bottom. In this way, the microstructure characteristic length changes as a function of the distance to the plate surface. Vickers indentations and piezo-spectroscopy measurements were done on longitudinal and transverse cross-sections of the samples at different depths. From these measurements, we concluded that the Vickers hardness (HV), indentation fracture toughness (KIC) and residual stresses (σh) of the plates were mainly independent from the distance to the surface. The mean values that we obtained in the Al2O3–YSZ plates were HV = 16 GPa, KIC = 4.2 MPa m1/2 and σh = −0.33 GPa, and in the Al2O3–YAG plates were HV = 16 GPa, KIC = 2.0 MPa m1/2, and σh = −0.1 GPa. These values are similar to those found in directionally solidified eutectic rods.  相似文献   

17.
As a novel technique, supercritical CO2 (SC-CO2) extraction enhanced by ultrasound was applied to the extraction of lutein esters from marigold and the extraction curves were described by Sovová model. The mass transfer coefficient in the solid phase (ks) increased from 3.1 × 10−9 to 4.3 × 10−9 m/s due to ultrasound. The effect of extraction parameters including particle size of matrix, temperature, pressure, flow rate of CO2, and ultrasonic conditions consisting of power, frequency and irradiation time/interval on the yield of lutein esters were investigated with single factor experiments. The results showed that the yield of lutein esters increased significantly with the presence of ultrasound (p < 0.05). The maximal yield of lutein esters (690 mg/100 g) was obtained for a particle size fraction of 0.245–0.350 mm, extraction pressure of 32.5 MPa, temperature of 55 °C and CO2 flow rate of 10 kg/h with ultrasonic power of 400 W, ultrasonic frequency of 25 kHz and ultrasonic irradiation time/interval of 6/9 s.  相似文献   

18.
Echinacea species is provided as dietary supplements for various infectious and immune related disorders and has a potential role in cancer prevention. The aim of this study was to optimize the extraction of total flavonoids using different extraction methods and investigate the cytotoxic effects on various cancer cell lines (CaCo-2, MCF-7, A549, U87MG, and HeLa) and VERO (African green monkey) as a non-cancerous cell line. Box-Behnken statistical design was used to evaluate the effect of pressure (100–200 bar), temperature (40–80 °C) and ethanol as co-solvent (6–20 wt%) at a flow rate of 15 g/min for 60 min in supercritical CO2 extraction and the effect of temperature (60–100 °C), time (5–15 min) and power (300–900 W) in microwave-assisted extraction. Optimum extraction conditions were elicited as 300 bar, 80 °C and 13% co-solvent yielding 0.472 mg rutin equivalent total flavonoids/g extract in SC-CO2 extraction, whereas 60 °C, 10 min and 300 W yielded the highest (0.202 mg rutin equivalent) total flavonoids in microwave-assisted extraction. Additional trials with subcritical water (0.022 mg/g) and Soxhlet extraction with methanol (0.238 mg/g) yielded lower flavonoid contents. The exposures upto 50 μg/ml of extracts revealed no significant inhibition on the proliferation of both tested cancer cells and healthy VERO cells.  相似文献   

19.
《Ceramics International》2016,42(6):7001-7013
Dense (95–98.6%) bulk boron carbide prepared by Spark Plasma Sintering (SPS) in Ar or N2 atmospheres were subject to three-point flexural tests at room and at 1600 °C. Eight different consolidation conditions were used via SPS of commercially available B4C powder. Resulting specimens had similar grain size not exceeding 4 µm and room-temperature bending strength (σ25 °C) of 300–600 MPa, suggesting that difference in σ25 °C is due to development of secondary phases in monolithic boron carbide ceramics during SPS processing. To explain such difference the composition of boron carbide and secondary phases observed by XRD and Raman spectroscopy. The variation in intensity of the Raman peak at 490 cm−1 of boron carbide suggests modification of the boron carbide composition and a higher intensity correlates with a higher room-temperature bending strength (σ25 °C) and Vickers hardness (HV). Secondary phases can modify the level of mechanical characteristics within some general trends that are not dependent on additives (with some exceptions) or technologies. Namely, HV increases, σ25 °C decreases, and the ratio σ1600 °C/σ25 °C (σ1600 °C – bending strength at 1600 °C) is lower when fracture toughness (KIC) is higher. The ratio σ1600 °C25 °C shows two regions of low and high KIC delimited by KIC=4.1 MPa m0.5: in the low KIC region, boron carbide specimens are produced in nitrogen.  相似文献   

20.
The present work describes a sensitive procedure for extraction and determination of three sulfonylurea herbicides (metsulfuron-methyl, bensulfuron-methyl and chlorsulfuron) in water samples using supramolecular solvent microextraction. A supramolecular solvent with a nano structure made up of decanoic acid assemblies dispersed in tetrahydrofuran and water was proposed. Also, a supercritical fluid extraction coupled with supramolecular solvent microextraction was applied for extraction and determination of ultra-trace amounts of sulfonylurea herbicides in soil samples. A Taguchi orthogonal array experimental design with an OA16 (45) matrix was employed to optimize the supercritical fluid extraction conditions. In supercritical fluid extraction–supramolecular solvent microextraction procedure, a mixture of decanoic acid and the SFE collecting solvent (tetrahydrofuran) was added to water for supramolecular solvent formation. The effective parameters on the supramolecular solvent microextraction efficiency were studied and optimized using two different optimization methods: one variable at a time and face centered design. Under the optimum conditions, linear dynamic ranges varied within 0.1–5 mg kg−1 (0.9978  R2  0.9987) and 0.5–100 μg L−1 (0.9973  R2  0.9995) for all of the sulfonylurea herbicides in the supercritical fluid extraction–supramolecular solvent microextraction and supramolecular solvent microextraction, respectively. The intraday (n = 5) and interday standard deviations were calculated by extracting the SUHs from water and soil samples through supramolecular solvent microextraction and supercritical fluid extraction–supramolecular solvent microextraction. Interday RSDs% lower than 7.1% and intraday RSDs% lower than 3.8% were obtained. Limits of detection, based on a S/N ratio of 3, were 0.5 μg L−1 and 0.7 mg kg−1 for supramolecular solvent microextraction and supercritical fluid extraction–supramolecular solvent microextraction, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号