首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
提出了一种低成本的由压电材料驱动的平面扩张/收缩管无阀微泵的制作工艺.通过数值模拟确定了扩张/收缩管扩张角的最优值,在此基础上,采用光刻和湿法刻蚀工艺,刻蚀了300μm深的泵腔基片和100 μm深的盖片;使用等离子体清洗技术将其与PDMS薄膜键合,完成了可以实现单向泵送的压电无阀微泵样机制作.研究了该压电无阀微泵样机的...  相似文献   

2.
This paper presents the application of the powder blasting technique for the fabrication of a low temperature co-fired ceramic package that is to host an optical sensor device. The package consists of several layers of green tape ceramic featuring aperture sizes ranging from 3 to 0.1 mm in diameter. These layers have been patterned using fine alumina particles of 9 μm in diameter in combination with an electroplated nickel mask coated with a protective layer. The latter is based on a photosensitive material laid down on top of the metallic surface, exposed and developed to free the metal apertures from the coating. The results show that the wide range of apertures size present in the mask can be used to machine the green ceramic. The quality of the structures is smooth and vias shapes are perfectly circular. These results were obtained at 50 psi with a flow rate of 0.20 g/s for a distance of 20 mm between the tip of the nozzle and the substrate.  相似文献   

3.
研制了一种可在低电压下工作的新型无阀微泵,该微泵利用有机玻璃(PMMA)制作泵腔,采用了扩散口/喷口的结构,以PDMS作为振动膜,利用微振动马达作为驱动部件。采用ANSYS软件进行有限元分析得到微泵扩散口/喷口的最佳尺寸。对微泵的振动频率和输出流量进行了测试,结果显示:电压为1.0~1.8 V时,微泵的输出流量随着电压的升高而增加,当电压为1.8~3.3 V时,微泵输出的流量保持稳定,达到150μL/min。该无阀微泵结构简单,驱动电压低,具有良好的性能和低廉的成本。  相似文献   

4.
Microstructures were formed on low temperature co-fired ceramic (LTCC) green substrates with high fidelity using micro embossing. The impact of embossing temperature and pattern density against the embossed profiles was investigated. The increase in pattern density resulted in a macro deformation in addition to embossed micro-depth. The macro deformation can be decreased by careful management of pattern density as well as pressure ramp and temperature ramp. The embossed ceramic green substrates were debinded and co-fired with a supplier-recommended process; the dimension shrinkage of embossed channels after co-firing ranges from 20 to 22% in depth and from 10 to 13% in width. The achievements of this investigation demonstrated that micro embossing is a promising process for fabricating ceramic-based microstructures and devices, including embedded cavities and channels.  相似文献   

5.
Microsystem Technologies - A valveless micropump based on an electromagnetic actuation for drug delivery application has been designed. The parametric studies are performed to examine the effects...  相似文献   

6.
Low temperature co-fired ceramics (LTCC) technology is classically used in the field of radio frequencies to make items such as miniature transceivers for handheld devices. Here we harness the LTCC technology to autonomous micro-aerial vehicles (MAVs), a field in which small size and low mass are at a premium. Designing autonomous MAVs will be a highly challenging issue during the next few decades. Bio-inspired optic flow sensors, also known as elementary motion detector (EMD) circuits, have proved to be efficient means of providing animals and robots with visual guidance ability. The LTCC technology gives a good trade-off between the need for reliable optic flow sensors and the need for small-sized multiple electronic components. Comparisons with other technologies (PCB, analogue VLSI) show that LTCC technology is one of the most reliable solutions to the problem of obtaining reliable electronic EMDs that are small enough (area 7 mm × 7 mm) and light enough (mass 0.2 g) to be accommodated on-board a MAV. The output from our LTCC based optic flow sensors is largely invariant with respect to both contrast and spatial frequency.  相似文献   

7.
Low temperature co-fired ceramic (LTCC) based microfluidic devices are being developed for point-of-care biomedical and environmental sensing to enable personalized health care. This article reviews the prospects of LTCC technology for microfluidic device development and its advantages and limitations in processing capabilities compared to silicon, glass and polymer processing. The current state of the art in LTCC-based processing techniques for fabrication of microfluidic components such as microchannels, chambers, microelectrodes and valves is presented. LTCC-based biosensing applications are discussed under the classification of (a) microreactors, (b) whole cell-based and (c) protein biosensors. Biocompatibility of LTCC pertaining to the development of biosensors and whole cell sensors is also discussed. Other significant applications of LTCC microfluidic systems for detection of environmental contaminants and toxins are also presented. Technological constraints and advantages of LTCC-based microfluidic system are elucidated in the conclusion. The LTCC-based microfluidic devices provide a viable platform for the development of point-of-care diagnostic systems for biosensing and environmental sensing applications.  相似文献   

8.
High temperature co-fired ceramics (HTCCs) have wide applications with stable mechanical properties, but they have not yet been used to fabricate sensors. By introducing the wireless telemetric sensor system and ceramic structure embedding a pressure-deformable cavity, the designed sensors made from HTCC materials (zirconia and 96% alumina) are fabricated, and their capacities for the pressure measurement are tested using a wireless interrogation method. Using the fabricated sensor, a study is conducted to measure the atmospheric pressure in a sealed vessel. The experimental sensitivity of the device is 2 Hz/Pa of zirconia and 1.08 Hz/Pa of alumina below 0.5 MPa with a readout distance of 2.5 cm. The described sensor technology can be applied for monitoring of atmospheric pressure to evaluate important component parameters in harsh environments.  相似文献   

9.
The design, fabrication, and electrical characterization of a novel peristaltic thermopneumatic microfluidic (PTMF) pump for next-generation implantable medical treatment. To satisfy the demands of an implantable system, the PTMF pump design presented here includes biocompatibility, simple integration with microfluidics, bidirectionality, and particle tolerance. Test devices were fabricated with both silicon micromachining and soft lithography (polydimethylsiloxane micromolding). The effects of process parameters, specifically those related to silicon wet etch and metal deposition, on the performance of the microheaters in a peristaltic microfluidic pump. The thermal resistance of the microheaters is strongly dependent upon the relative thermal isolation, which impacts maximum pumping speed (from a few Hertz to kilo-Hertz). Thermal isolation is shown not to be an issue in the pump design given the spacing of the neighboring microheaters.  相似文献   

10.

The precise control over the drug delivery involved in several vital applications including healthcare is required for achieving a therapeutic effect. For such precise control/manipulation of the drugs, micropumps are used. These micropumps are basically of two types viz. check valve-based and valveless micropumps. The valveless micropumps are preferable due to the congestion-free operation of diffuser/nozzle valves. In this paper, design optimization of a valveless piezo-electric actuation based micropump is carried out using COMSOL Multiphysics 5.0 by coupling two Multiphysics interface modules namely fluid–structure interaction and piezoelectric physics modules. Using simulation studies, the influence of pump design parameters including diffuser angle, diffuser length, neck width, chamber depth, chamber diameter and diaphragm thickness on net flow rate is studied. An optimal set of design parameters for the proposed micropump is identified. Further, the influence of actuation frequency on the flow rate is analysed. It is found that the proposed micropump is capable to deliver a net flow rate of 20 µl/min and a maximum back pressure attainable is 200 Pa.

  相似文献   

11.
We present the design, fabrication and characterization of a new, piezoelectrically actuated fully polymeric three chamber peristaltic micropump. An optimized bimorph bending actuator has been designed to deform the polymer membranes in an optimal and most-efficient way. The piezoelectric actuators of the micropump are driven with actuation voltages of ±260 V. The pump has a total size of 46 × 18 × 4 mm, is produced by hot embossing and is assembled in a very simple way. The presented design is able to pump water with a flow rate of 4.8 ml/min and achieves a maximum back pressure of app. 200 mBar.  相似文献   

12.
提出用硅-硅直接键合的SOI片制作压阻式湿度传感器.它是利用涂覆在硅膜上聚酰亚胺膜吸湿发生膨胀,导致双膜结构发生弯曲产生应力的原理进行工作的.为了确定传感器结构、优化尺寸,采用ANSYS软件进行了模拟计算、设计了MEMS湿度传感器的制造工艺,对制作的微湿度传感器进行了测试,其灵敏度为0.21 mV%RH,最大湿滞为8%RH.  相似文献   

13.
一种基于MEMS技术的压电微泵的研究   总被引:1,自引:1,他引:1  
介绍了一种基于MEMS技术的压电微泵。该微泵利用聚二甲基硅氧烷(PDMS)作为泵膜,使用了一个主动阀和一个被动阀,并利用压电双晶片作为驱动部件。压电双晶片和PDMS泵膜的组合可以产生较大的泵腔体积改变和压缩比,显著降低了加工成本,并提高了成品率。对压电微泵的输出流量进行了测试,结果显示:电压、频率以及背压对流量均有显著影响。在100 V,25Hz的方波驱动下,该压电微泵的最大输出流量为458μL/m in,最大输出压力为6 kPa。  相似文献   

14.
Previous studies have indicated that a one-sided actuating piezoelectric micropump (OAPMP) combined with two valves may enhance the liquid flow rate to 4.1 ml/s and make it possible to reach the maximum pump head of 9807 Pa in a limited space. In this study, an innovative one-sided actuating piezoelectric valveless micropump (OAPMP-valveless) has been developed to actuate fluid at a higher flow rate in one direction by adding a secondary chamber. The secondary chamber plays a key role in the application of the valveless micropump: the flow rate of the pump can reach 0.989 ml/s by adding a secondary chamber. The maximum pump head is 1522.5 Pa when using the 0.3 mm-thick secondary diaphragm and the 0.5 mm-thick primary diaphragm. In addition, if a nozzle/diffuser element is applied to the OAPMP-valveless with a secondary chamber, the flow rate can be further improved to 1.183 ml/s at a frequency of 150 Hz. A three-dimensional numerical model of the valveless micropump has been built to compare the measured results with the simulated results.  相似文献   

15.
基于数据融合的陶瓷窑炉温度记录仪的研究   总被引:4,自引:0,他引:4  
根据陶瓷窑炉的功能和技术指标要求,给出了测温系统的设计方案。设计中采用了基于算术平均值与分批估计的软件数据融合的热电偶线性化处理算法,很好地解决了系统中热电偶测温的不确定性,提高了测量精度,保证了测量数据的可靠性。同时该无纸温度记录仪,具有高测量精度、高可靠性、高稳定性、低成本的特点,通用性强。  相似文献   

16.
A valveless micropump, actuated by a PZT disk bonded to a glass plate, can generate positive flow. In order to estimate flow characteristics of micropumps, it is necessary to theoretically analyze the radial expansion (more specifically, the equivalent moment) of the PZT disk according to the voltage input. Using the equivalent moment, deflection equations are derived for the tri-layer disk (PZT, epoxy bonder and glass plate) and are confirmed to match well with experiments. The flow rate of the valveless micropump is also theoretically and experimentally investigated in terms of input voltage and oscillation frequency. The flow increased at a rate of 0.1 μL/min/V, and the maximum flow rate was obtained at the driving frequency of around 225 Hz.  相似文献   

17.
This work presents a novel thermo-pneumatic peristaltic micropump with low temperature elevation on working fluid. The proposed device, which consists of two separate zones for air-heating and fluid-squeezing, is realized by using micromachining techniques. Also, the device can be operated by using a small and simple actuation circuitry with low applied voltages. Under similar operational conditions, the proposed micropump shows similar fluid-pumping performance when compared with the conventional design of thermo-pneumatic micropumps. However, for the proposed design, the temperature elevation on the fluid-pumping area is as small as about 2.0 K, which is less than 8% of that generated by the conventional design. Furthermore, by applying higher voltages, larger flow rate can be achieved with relatively small increase in temperature elevation. Due to low temperature elevation on working fluid, the proposed device is suitable for the applications such as DNA chips or protein chips. In addition, because of its small size and simple actuation scheme, potentially the proposed device can be integrated into the devices for point-of-care applications.  相似文献   

18.
 This paper reports a research effort to design, microfabricate and test a DC type magnetohydrodynamic (MHD) micropump using LIGA method (Menz et al., 1991). The micropump is driven using the Lorentz force and can be used to deliver electrically conductive fluids. In operation, a DC voltage is supplied across the electrodes to generate the distributed body force on the fluid in the pumping chamber, and therefore a constant pressure difference along the pumping chamber. The external magnetic field was supplied using permanent magnets. The major advantage of a MHD-based micropump is that it does not contain any moving parts. It may have potential applications in medicine delivery, biological and biomedical studies. The test of the DC prototype micropump shows that bubble generation mechanism affect the performance significantly and an AC driving mechanism may be used to improve the performance.  相似文献   

19.
针对陶瓷基微热板MEMS器件难以微加工,器件表面加热Pt膜使用普通正性光刻胶难以实现光刻剥离的工艺难点问题,提出了激光微加工和柔性机械剥离相结合的微加工方法。以AlN陶瓷为衬底基片,采用激光微加工技术实现热隔离刻蚀体加工,刻蚀梁宽可达0.2 mm。采用柔性机械剥离工艺制备方法解决普通正性光刻胶形成倒梯形凹槽Pt膜难实现图形化问题,可在复杂表面特性的陶瓷基衬底上实现Pt膜剥离线宽10μm。同时利用有限元法进行传感器阵列设计和热结构仿真,验证设计工艺的可行性。  相似文献   

20.
在嵌入式虚拟磁带库(VTL)的设计中,应用程序与内核之间的通讯是一个核心问题。本文提出了基于共享磁盘和共享内存的应用程序与内核之间的通讯方案,实现了嵌入式虚拟磁带库中的用户界面和SCSI控制器之间可靠的消息传递。实验表明,该通讯解决方案是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号