首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以芦丁为模板分子,以α-甲基丙烯酸(MAA)和丙烯酰胺(AM)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,利用分子印迹技术在甲醇/水(V/V,1/4)溶剂中合成了芦丁分子印迹聚合物(MIPs),研究了不同功能单体及其用量和不同交联剂用量的聚合体系组成对印迹聚合物吸附特性的影响。对最佳比例制备的MIPs进行了吸附等温实验和Scatchard分析,其结合位点的离解常数Kd分别为105.26mg.L-1和1250mg.L-1,饱和吸附量Qmax分别为18.02mg.g-1和73.50mg.g-1。并利用红外光谱(IR)对分子印迹聚合物进行了表征。  相似文献   

2.
以芦丁为模板分子,以α-甲基丙烯酸(MAA)和丙烯酰胺(AM)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,利用分子印迹技术在甲醇/水(V/V,1/4)溶剂中合成了芦丁分子印迹聚合物(MIPs),研究了不同功能单体及其用量和不同交联剂用量的聚合体系组成对印迹聚合物吸附特性的影响。对最佳比例制备的MIPs进行了吸附等温实验和Scatchard分析,其结合位点的离解常数Kd分别为105.26mg.L-1和1250mg.L-1,饱和吸附量Qmax分别为18.02mg.g-1和73.50mg.g-1。并利用红外光谱(IR)对分子印迹聚合物进行了表征。   相似文献   

3.
采用表面印迹法,以恩诺沙星为模板,甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,在聚苯乙烯酶标板表面直接合成恩诺沙星分子印迹聚合物膜。通过傅立叶红外光谱分析、电镜扫描、吸附平衡结合实验、Scatchard方程分析及吸附动力学实验对恩诺沙星印迹聚合物膜进行性能表征。合成的分子印迹聚合物膜具有很好的印迹效果,对恩诺沙星有较高的特异性吸附,且传质速率快,由Scatchard方程分析可知,聚合物膜中含有两类吸附位点,其中高亲和力位点的平衡解离常数(Kd)为19.49μg/mL,饱和吸附容量(Qmax)为12.98μg/mL,低亲和力位点的Kd为277.78μg/mL,Qmax为98.14μg/mL,吸附位点的异质性并不会影响聚合物膜应用于竞争性免疫吸附分析。通过该方法合成的恩诺沙星特异性识别聚合物膜可以作为仿生抗体,应用于竞争性免疫吸附分析检测恩诺沙星在食品中的残留。  相似文献   

4.
以吡蚜酮为模板分子,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,偶氮二异丁腈为引发剂,采用本体聚合法制备了吡蚜酮分子印迹聚合物。实验优化了模板分子与功能单体的摩尔比,通过吸附动力学和等温吸附实验对聚合物的吸附性能进行了表征,利用拟二级动力学模型和Scatchard分析研究了聚合物对目标物的吸附行为。实验结果表明:模板分子与功能单体摩尔比为1∶4时,制备的吡蚜酮分子印迹聚合物具有较好的印迹效果,最优条件下聚合物的吸附容量为25.11mg/g,印迹因子为3.0,可在80min内达到吸附平衡(20mg/L);聚合物对目标物的吸附行为符合拟二级动力学模型(R2=0.999),Scatchard分析结果表明聚合物在聚合过程中形成了较为明显的印迹位点,对目标物呈现一致的亲和力。   相似文献   

5.
以植酸为模板分子,甲基丙烯酸(MAA)为功能单体,N,N’-乙烯基丙烯酰胺(EBA)为交联剂,过硫酸铵为引发剂,采用本体聚合法制备对植酸具有高特异选择性的植酸分子印迹聚合物(MIPs)。通过扫描电镜观察了分子印迹聚合物表面的结构,利用红外光谱进一步对其化学结构进行表征。通过动态吸附、静态吸附和选择性吸附考察了其吸附性能。研究表明植酸分子印迹聚合物对植酸的吸附高于对肌醇的吸附,植酸在印迹聚合物中的印迹因子为1.70,而与植酸结构相似物肌醇的印迹因子为1.46。解吸80 min,MIPs解吸达到稳定,解吸率达到89.59%。植酸分子印迹聚合物对植酸的吸附特异性强,对植酸的吸附量为21.38μmol·g-1,解吸效果好,进行吸附-解吸附循环5次后,植酸印迹聚合物的性能稳定,对植酸吸附容量为65.62μmol·g-1,是第一次吸附容量的90.00%,可重复使用。   相似文献   

6.
以罗丹明B为模板分子,采用本体聚合法,以三羟甲基丙烷三甲基丙烯酸酯为交联剂,乙腈为致孔剂,制备具有印迹位点的聚合物。通过振荡吸附实验确定了适宜的单体种类,并对致孔剂的用量进行优化。采用扫描电镜和红外分析仪对其微观形貌进行表征,并对聚合物进行平衡吸附和选择性研究。结果表明,印迹聚合物对目标分子具有较高的选择性和亲和性,在质量浓度为15 μg/mL时,达到平衡,饱和吸附量为370.49 μg/g。吸附动力学研究表明,时间为150 min时吸附达到平衡。  相似文献   

7.
利用硅胶颗粒为基质,在其表面接枝硅烷化试剂3-甲基丙烯酰氧基丙基三甲氧基硅烷(γ-MPS),进行硅烷化处理后,以链霉素为模板分子,甲基丙烯酸(MAA)为功能单体,N,N’-亚甲基双丙烯酰胺(MBA)为交联剂在颗粒表面合成分子印迹层,制备得到链霉素分子印迹聚合物(MIPMs)和空白聚合物(NMIPMs),并采用静态平衡结合法借助高效液相色谱-蒸发光散射(HPLC-ELSD)研究了聚合物对模板分子链霉素的吸附能力、结合动力学和选择特性。扫描电镜观察和红外光谱分析结果表明表面印迹层已经成功合成;吸附实验结果表明,MIPMs比NMIPMs对链霉素具有更强的吸附特性和更好的选择性。  相似文献   

8.
以腈菌唑为模板分子,丙烯酰胺(AM)为功能单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,模板分子与功能单体最佳浓度配比为1∶2,制备出对腈菌唑具有高选择性的分子印迹固相萃取膜。通过紫外光谱试验考察了制备印迹膜时致孔剂的选择和分子印迹膜印迹次数对液体通过性的影响。建立了基于分子印迹固相萃取膜-高效液相色谱法测定粮谷中腈菌唑残留的方法。样品经乙腈提取,固相萃取膜净化,经C18柱分离,紫外检测210 nm。结果表明,腈菌唑在0.3~20μg/m L浓度范围内有良好的线性关系(r=0.999 4),平均回收率在80.2%~86.0%之间,相对标准偏差(RSD)≤3.3%(n=5),检出限为1.2μg/g。该方法选择性强、灵敏、可靠,适用于粮谷等复杂基质中腈菌唑的残留检测。  相似文献   

9.
10.
目的制备双酚A环氧衍生物的分子印迹聚合物。方法采用沉淀聚合法,以双酚A(bisphenol A,BPA)和双酚A二环氧甘油(bisphenol A diglycidyl ether,BADGE)为双模板分子,α-甲基丙烯酸(methacrylic acid,MAA)为功能单体,三羟甲基丙烷三甲基丙烯酸酯(trimethylolpropane trim ethacrylate,TRIM)为交联剂,偶氮二异丁腈(azodiisobutyronitrile,AIBN)为引发剂,合成了一种高选择性的分子印迹聚合物,运用扫描电镜、红外光谱分析等手段对其形貌、物理特征进行了表征,同时进行了聚合物的静态吸附与动态吸附性能研究。结果合成的分子印迹聚合物(molecularly imprinted polymers,MIPs)对10种化合物的最大平衡吸附量为18.12~27.00mg/g,对10种化合物的吸附略有区别,但差异不大,而非印迹聚合物(non-imprinted polymers,NIPs)则对10种化合物的吸附量为7.10~10.73 mg/g,说明NIPs吸附是由于存在物理吸附。结论 10种目标化合物在MIPs上均有吸附,能够应用于分子印迹-固相萃取-高效液相色谱检测方法的建立。  相似文献   

11.
采用分子印迹技术,以木犀草素作为模板分子,丙烯酰胺和甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,制备木犀草素表面分子印迹聚合物。采用静态吸附法研究影响该聚合物对木犀草素的吸附能力的因素,并对等温吸附过程和吸附机理进行判断。结果表明:该印迹聚合物对木犀草素具有优良的吸附效果,在p H值为7.0,底液浓度为100 mg/L,吸附时间2 h条件下,该聚合物对木犀草素的吸附量为28.32 mg/g;吸附平衡试验说明该等温吸附过程符合Langmuir方程,饱和吸附量为31.983 mg/g,吸附动力学研究表明,该吸附过程符合准二级动力学方程,吸附速率常数为0.045 3 g/(mg·min);选择性试验说明该印迹聚合物对目标物具有优异的选择识别能力。该聚合物能应用于木犀草素的前处理、提取等方面。  相似文献   

12.
为了制备特异性强、吸附效果好的分析材料,本实验采用分子印迹技术,以农药氯氰菊酯为模板分子,甲基丙烯酸 (MAA) 为功能单体,乙二醇二甲基丙烯酸酯 (EDMA) 为交联剂,合成了对氯氰菊酯具有高度选择性的分子印迹聚合物(MIP)。通过平衡吸附实验,评价了其对氯氰菊酯的亲和力和选择性。结果表明,与空白MIP相比,氯氰菊酯MIP对其表现出较高的亲和力。Scatchard 分析表明,在MIP中存在对氯氰菊酯有不同亲和力的两类作用位点,其中高亲和力结合位点的离解常数Kd为3.604×10-4mol/L,最大表观吸附量Qmax为53.045μmol/g,低亲和力结合位点的离解常数Kd为1.8015×10-3mol/L,最大表观吸附量为116.61μmol/g。氯氰菊酯MIP上有两个不同性质的结合位点,它对模板分子氯氰菊酯具有一定的选择性和识别能力。  相似文献   

13.
利用疏水性二氧化硅粒子和少量的非离子表面活性剂Hypermer 2296构建稳定的油包水型Pickering HIPEs,以三氟氯氰菊酯(LC)为模板分子,丙烯酰胺(AM)和聚乙二醇二甲基丙烯酸酯(PEGDMA)为聚合前驱体,制备了具有规则开孔结构的分子印迹聚合物泡沫材料(MIPFs)。利用静态吸附研究了MIPFs选择性吸附分离LC的行为和机理,并考察MIPFs结构对于吸附作用的影响。结果表明,MIPFs对LC的吸附属于单分子层吸附,符合准二级动力学模型,MIPFs对LC具有较好的选择性识别能力,可以有效分离食品中残留的LC成分,提高聚酯类农残检测的精密度。   相似文献   

14.
分子印迹技术是人工合成对印迹分子具有专一识别能力聚合物的技术。综述了2001年至今主要相关文献,总结了近两年分子印迹技术所取得的最新成就,介绍了目前分子印迹技术发展中存在的问题,并对分子印迹技术的研究及应用前景作出了展望。  相似文献   

15.
采用分子印迹技术,以β-环糊精衍生物为功能单体,氨基甲酸乙酯(EC)为模板分子,合成了对氨基甲酸乙酯有特异性识别和吸附的新型分子印迹聚合物(MIP)。通过红外光谱(IR)、核磁共振(13C-NMR)、扫描电镜(SEM)对其结构进行表征,利用气-质联用仪(GC-MS)测定该分子印迹聚合物对EC的选择性识别性能,构建Scatchard模型理论方程。结果表明,设计的反应合成路线合理,成功制备出新型EC分子印迹聚合物。合成的氨基甲酸乙酯分子印迹聚合物,通过共价键联分子作用对EC产生分子识别作用,表现出优异的选择性吸附功效。构建的理论方程定量解析出该分子印迹聚合物对模板分子有两类识别位点,动态理论方程体现出其优异的吸附特性。有关结果可为无特异性结构的氨基甲酸酯类污染物的去除和分离提供技术参考。  相似文献   

16.
采用γ-氨丙基三甲氧基硅烷(AMPS)对硅胶进行改性,然后将聚甲基丙烯酸聚合接枝到AMPS-Si O2表面上,再以乙二醇二甲基丙烯酸酯为交联剂进行交联聚合,溶菌酶(LYZ)为模板分子,得到表面具有溶菌酶分子印迹聚合物的硅胶材料(LYZ-MIP-PMAA/Si O2)。采用红外、扫描电镜和粒径测定等方法对LYZ-MIP-PMAA/Si O2进行了表征。通过静态和动态吸附试验研究LYZ-MIP-PMAA/Si O2对溶菌酶的吸附性能,并以牛血清蛋白等为竞争底物,研究其选择吸附性能。结果显示,LYZ-MIP-PMAA/Si O2对溶菌酶的吸附能力明显大于空白分子印迹硅胶(NIP-PMAA/Si O2),其对溶菌酶和牛血清蛋白的分离因子为1.20,说明其对溶菌酶具有较好的选择吸附性能。  相似文献   

17.
目的 制备基于丙烯酰胺的黄曲霉毒素分子印迹聚合物(molecularly imprinted polymer, MIPs)并研究其吸附性能。方法 以黄曲霉毒素的结构类似物5,7-二甲氧基香豆素(5,7-dimethoxy coumarin, DMC)为假模板分子,以丙烯酸酯(acrylate,AAM)为功能单体,采用溶胶凝胶表面印迹技术制备了新型核壳型黄曲霉毒素SiO2包裹Fe3O4分子印迹聚合物(Fe3O4@SiO2 MIPs),并对其进行透射电镜、傅里叶变换红外、X射线衍射、振动磁强表征以及吸附动力学实验和吸附结合实验,研究Fe3O4@SiO2 MIPs的吸附性能。结果 所制备的Fe3O4@SiO2 MIPs具有优良的选择性、高的吸附容量、快速的吸附动力学,在60 min达到最大吸附容量4.289 mg/g,印迹因子为1....  相似文献   

18.
本文报道了以3-(异丁烯酰氧)丙基三甲氧基硅烷(MPS)修饰的Fe3O4@SiO2纳米颗粒为磁性载体,邻苯二甲酸二(2-乙基己基)酯(DEHP)为模板分子,甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,制备了对DEHP有特异识别性的新型磁性分子印迹聚合物(M-MIPs)。透射电镜(TEM)图表明该聚合物具有核壳结构,磁强计(VSM)测量表明该聚合物具有超顺磁性,这些特征使之在外磁场下可实现快速分离。静态平衡吸附实验和Scatchard分析结果表明,该聚合物存在两类不同的结合位点,平衡解离常数分别为0.26mmol/L和0.071mmol/L,最大表观结合量分别为28.23mg/g和13.09mg/g。选择性结合实验表明,与结构类似物相比,M-MIPs对模板分子具有优越的识别能力和选择性。该方法制备的聚合物可进一步用于食品中DEHP的分离和富集。  相似文献   

19.
以L-薄荷酮为模板分子,通过Hyperchem8.0计算模拟,从4种单体:对乙烯基苯甲酸(VBA)、甲基丙烯酸(MAA)、丙烯酰胺(AM)、丙烯酸(AA)中优化出功能单体,制备出L-薄荷酮分子印迹聚合物。通过红外光谱分析、场发射扫描电镜、静态吸附实验、Scatchard分析及等温吸附模型分析对聚合物的外貌形态、吸附性能及印记效果进行了表征。结果表明,L-薄荷酮与甲基丙烯酸所形成复合物的作用力最强,由红外光谱研究发现,L-薄荷酮与甲基丙烯酸之间存在氢键,与分子模拟的结果一致。与非印迹聚合物相比,印迹聚合物对模板分子有较强的吸附作用,最大表观吸附量是47.84μmol/g,且在研究浓度范围内印迹聚合物对印迹分子只存在一种结合位点,符合Langmuir等温吸附模型。  相似文献   

20.
磁性分子印迹聚合物在食品安全检测中的应用   总被引:1,自引:1,他引:0  
磁性分子印迹聚合物是将分子印迹技术与磁性材料相结合制备的物质。分子印迹技术是一种新型高效分离及分子识别技术,具有特异的识别性和选择性;而磁性材料又具有超顺磁性,能在外加磁场的作用下将其从溶液中快速分离,还可以通过共聚或表面修饰等途径使其表面有多种反应官能团,以吸附或共价键合的方式与目标分子相结合。两者结合后制备的磁性分子印迹聚合物,兼备了磁性材料和分子印迹聚合物的共同优点,具有特异的识别性和选择性,同时也避免了分子印迹聚合物需要离心或抽滤才能从溶液中分离出来的缺点,具有快速分离的特点。本文重点综述了磁性分子印迹聚合物的制备方法及其优缺点,以及磁性分子印迹聚合物在食品中的农药残留、生物医药残留和兽药残留等方面的检测应用及其研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号