首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用种子乳液聚合方法制备了聚丙烯酸丁酯/聚(甲基丙烯酸甲酯-co-丙烯酰胺)(poly(BA)/poly(MMA-coAM)),简称PBMAM核/壳结构共聚物;采用水热法对六方氮化硼(h-BN)进行表面改性,简称ABN;随后采用熔融共混法将PBMAM和ABN与氰酸酯树脂(CE)制得CE/PBMAM/ABN复合材料,研究了ABN用量对增韧氰酸酯复合材料性能的影响。结果表明,随着ABN含量的增加,复合材料的导热、热稳定性和力学性能均有提高。当PBMAM添加量为5%,ABN为8%时,复合材料的导热系数为纯树脂的2.4倍,冲击强度和弯曲强度比纯氰酸酯树脂的分别提高了2.8倍和1.7倍,复合材料的10%热分解温度提高了50℃。  相似文献   

2.
赵春宝  苏磊  杨绪杰  汪信 《功能材料》2013,(16):2301-2304,2308
采用十二胺对氧化石墨片进行表面改性,通过红外光谱(FT-IR)、X射线衍射(XRD)和核磁共振谱(NMR)对改性后的氧化石墨片(GO-DDA)结构进行表征。将GO-DDA引入氰酸酯树脂体系,制备了氰酸酯(CE)/氧化石墨片复合材料,着重研究了GO-DDA用量对氰酸酯固化反应及复合材料导热与绝缘性能的影响。DSC结果表明,GO-DDA对氰酸酯树脂固化反应有明显的促进作用,可降低树脂的固化温度。复合材料的热导率和体积电阻率测试结果表明,GO-DDA的加入能显著提高氰酸酯树脂的导热性能,当GO-DDA加入量为1.0%时,复合材料的热导率比纯CE树脂材料提高了48%,而且复合材料仍具有良好的电绝缘性能。复合材料的SEM结果表明,少量GO-DDA的加入还有利于改善复合材料的断裂韧性。  相似文献   

3.
采用γ-巯丙基三甲氧基硅烷偶联剂(KH-590)对碳化硅粉体(SiC)进行了表面改性,制备了氰酸酯树脂/碳化硅(CE/SiC)复合材料。研究了SiC含量对复合材料的静态力学性能、电绝缘性能、导热性能和摩擦性能的影响,以扫描电子显微镜对复合材料的断面形貌进行了观察。结果表明,少量SiC粉体的引入能有效改善复合材料的静态力学性能、耐磨性能,且复合材料仍保持良好的电绝缘性能。当SiC的质量分数在6%~8%时,复合材料的冲击强度、弯曲强度相对于纯CE分别提高了89. 6%和67. 6%;当SiC的质量分数在8%时,复合材料的导热系数增大4. 6倍,摩擦系数比纯CE降低了43. 5%,耐磨性相对于纯CE提高77. 5%。  相似文献   

4.
采用四针状氧化锌晶须(ZnOw)和石墨烯纳米片(GNP)改性氰酸酯树脂(CE)制备了系列导热绝缘复合材料,研究了填料的种类和用量对氰酸酯复合材料导热、绝缘及热稳定性能的影响。当树脂基体中加入50%ZnOw或10%GNP时,复合材料的热导率分别达到0.77和0.97 W/(m·K),较纯树脂基体材料分别提高了185%和259%。将ZnOw与GNP混合填充氰酸酯树脂则更有利于提高复合材料的导热性能,当树脂基体中加入40%ZnOw和10%GNP混合填料时,复合材料的热导率可达到1.54 W/(m·K),较纯树脂基体材料提高了470%,并且该复合材料仍能够保持良好的电绝缘性能。TGA结果表明,石墨烯纳米片和氧化锌晶须的加入可以明显提高氰酸酯树脂复合材料的热稳定性。  相似文献   

5.
为了改善纤维增强树脂基复合材料厚度方向(Z向)热导率和纵向(X向)压缩强度,通过向氰酸酯树脂中加入不同质量分数的鳞片石墨填料进行树脂基体改性,并与中国TG800炭纤维复合制备成炭纤维复合材料。研究了鳞片石墨/氰酸酯复合物固化前的流变性能,固化后的导热率、力学性能,以及炭纤维/鳞片石墨/氰酸酯复合材料的热导率和力学性能。结果表明,未固化鳞片石墨/氰酸酯复合材料的流变复数黏度随着鳞片石墨添加量呈指数型增加,随着形变量的变化表现出佩恩(Payne)效应,体现了鳞片石墨在树脂基体中的联通网络的形成和破坏过程;固化后复合材料的热导率随着鳞片石墨添加量的增加呈线性增加。当鳞片石墨添加量为10 wt%时,鳞片石墨/氰酸酯拉伸模量从2.9 GPa提高到4.3 GPa,提高了48%,热导率提高了100%,炭纤维/鳞片石墨/氰酸酯复合材料的Z向导热率提高了127%,复合材料纵向压缩强度提高了31%。  相似文献   

6.
采用经表面修饰产生羟基碳纳米管(CNT-OH)与氰酸酯树脂(CE)发生化学键合作用,又经超声处理,克服纳米粒子"自聚"弊端,增强其与树脂相容性,制得CE树脂体系和CE/碳纤维增强复合材料(CFRP)(CE/CFRP),使CE树脂体系和CE/CFRP宏观性能大为强化增益。测定了不同CNT-OH用量对CE树脂体系导热性能和冲击韧性的影响,采用扫描电子显微镜对冲击断面进行观察。结果表明:当CNT-OH用量小于5.0%(wt,质量分数)时,CE树脂体系的导热系数随CNT-OH用量的增加而增高,当用量大于5.0%(wt,质量分数),导热系数增加趋势变缓。CNT-OH对CE树脂体系有一定的增韧作用,当用量为3.0%(wt,质量分数)时,CE的冲击韧性最高达到4.88J/m2,冲击断面呈韧性断裂。同时测定了CNT-OH用量为0%和3.0%的CE/CFRP层间剪切强度和压缩强度,结果表明添加3.0%CNT-OH的CE/CFRP层间剪切强度达到84.9MPa,压缩强度达到1041.0MPa,比未改性CE/CFRP分别提高了19.2%和15.7%。  相似文献   

7.
采用硅烷偶联剂KH550对氮化硼粉末(BN)进行了表面改性,并制备了氰酸酯树脂/氮化硼导热复合材料。研究了BN含量对复合材料的导热性能、电绝缘性能的影响,并运用扫描电子显微镜对材料的断面形貌进行了观察。结果表明:少量BN的加入能有效改善氰酸酯复合材料的导热性能,且复合材料仍保持良好的电绝缘性能。当BN的体积分数达到23.6%时,复合材料的导热系数为1.33W·m-1·K-1,为纯树脂材料的4.6倍。  相似文献   

8.
以合成的双环氧基笼型倍半硅氧烷(EP-DDSQ)为改性剂,对双酚A型氰酸酯树脂(CE)进行改性,制备EP-DDSQ/CE复合材料。结果表明,EP-DDSQ加快了EP-DDSQ/CE复合材料的固化反应速率。当EP-DDSQ添加量为1wt%时,EP-DDSQ/CE复合材料冲击强度、弯曲模量和弯曲强度分别达到16.9 kJ/m2、123.6 MPa和3.37 GPa,比纯CE分别提高了80.5%、21.6%和14.0%,说明适量的EP-DDSQ能够同时提高EP-DDSQ/CE复合材料的韧性和强度。动态力学分析和热重分析结果表明,在EP-DDSQ添加适量时,EP-DDSQ/CE复合材料的玻璃化转变温度、初始分解温度和质量保持率有所提高,最大分解温度基本保持不变。介电性能分析结果表明,EP-DDSQ/CE复合材料的介电常数和介电损耗呈降低趋势,说明EP-DDSQ的加入赋予了EP-DDSQ/CE复合材料更优异的介电性能。   相似文献   

9.
SiO2 / 氰酸酯纳米复合材料的力学性能和热性能   总被引:13,自引:0,他引:13       下载免费PDF全文
采用高速均质剪切法制备了SiO2 / 氰酸酯(CE) 纳米复合材料, 并对该体系的静态力学性能、动态力学性能和热稳定性进行了研究。结果表明, 纳米SiO2的加入提高了复合材料的冲击强度和弯曲强度。当SiO2 含量为0. 30 wt %时, 复合材料的冲击强度达最大, 增幅为88. 9 %; 当SiO2含量为0. 15 wt %时, 材料的弯曲强度达最大, 增幅为2010 %。复合材料的储能模量和高温损耗模量较纯CE 树脂有明显提高, 玻璃化转变温度比纯CE 提高了31. 2 ℃, 热分解温度在SiO2含量为0. 30 wt %时达最大, 失重为10 %时的热分解温度提高了25. 7 ℃。   相似文献   

10.
将苯基三硅羟基倍半硅氧烷(T7)引入氰酸酯树脂(CE)和环氧树脂(EP)复合体系,制备了一系列CE/EP/T7复合材料.采用傅里叶红外光谱(FT-IR)、扫描电镜(SEM)、动态力学热分析(DMA)及热重分析(TGA)对复合材料的形态与性能进行了表征.结果表明,T7能均匀分散于树脂基体中,并参与了复合体系的固化反应;T7的加入有助于提高CE/EP材料的储能模量和玻璃化转变温度;含T7的CE/EP复合材料仍保持了优异的热稳定性,且在高温阶段的热分解残余量随着T7的含量增加而增大,有利于提高氰酸酯基复合材料的阻燃性能.  相似文献   

11.
纳米SiO_2改性氰酸酯/聚丙烯腈聚合物性能研究   总被引:1,自引:0,他引:1  
应用聚合物网络技术,通过制备氰酸酯(CE)/聚丙烯腈(PAN)网络聚合物,再以纳米Si O2改性,制得聚合物复合材料。采用红外光谱、透射电子显微镜等手段表征了该复合材料的微观结构,测定了其力学性能。结果表明,该三组分复合材料CE/PAN/3%Si O2,在CE/PAN为85/15时,其力学性能均达到最佳状态,冲击强度和弯曲强度比纯CE分别提高了83.11%和12.84%;添加3%纳米Si O2的聚合物与未添加Si O2的相比,其冲击强度再次提高了30.31%,弯曲强度提高了17.16%;红外光谱和透射电镜测试分析结果表明,组成网络的各复合材料组分之间未发生化学反应。互穿提高了复合材料承担载荷的能力,从而提高了CE的强度与韧性。  相似文献   

12.
纳米SiO2增韧增强氰酸酯制备工艺的研究   总被引:2,自引:0,他引:2  
从纳米SiO2三种不同的分散工艺(研磨法、偶联剂表面处理法和高速均质剪切法)着手,通过原位聚合法制得SiO2/氰酸酯(CE)纳米复合材料;采用透射电镜分析(TEM)、扫描电镜分析(SEM)和热失重分析(TGA)研究了三种分散工艺对纳米SiO2的分散以及复合材料的力学性能和热性能的影响.结果表明,研磨对纳米SiO2的分散优于高速均质剪切,偶联剂表面处理分散较差;高速均质剪切对复合材料力学性能和热性能的提高程度优于研磨法,当纳米SiO2含量为1phr时,高速均质剪切所得复合材料的冲击强度和弯曲强度分别比纯CE提高35.0%和12.1%;当质量损失为5%时复合材料的热分解温度较纯CE提高23.8℃;偶联剂表面处理法则降低了复合材料的弯曲强度和热分解温度.  相似文献   

13.
硼酸铝晶须增强氰酸酯树脂的性能   总被引:4,自引:0,他引:4  
采用硼酸铝(AlBw)晶须改性氰酸酯树脂制备出氰酸酯树脂/晶须复合材料,研究了表面处理和晶须用量对氰酸酯树脂体系的反应活性、复合材料力学性能以及耐湿热性的影响.结果表明,未经表面处理的AlBw晶须不能改善氰酸酯树脂体系的韧性,反而使树脂韧性下降,表面处理的晶须均可以改善树脂的力学性能,经硼酸酯偶联剂处理后的AlBw晶须使树脂体系冲击强度提高.采用硼酸酯偶联剂对AlBw晶须进行表面处理可明显改善晶须在树脂体系中的分散性.在晶须用量低于8%时,随着晶须加入量的增加,树脂体系的力学性能增大,氰酸酯树脂/晶须复合材料表现为韧性断裂并有明显的晶须拔出现象.晶须的加入使树脂体系耐热性和耐湿热性提高,加入8%的AlBw晶须使体系吸水率下降,冲击强度和弯曲强度保持率提高.  相似文献   

14.
针对单一导热填料在高填充量下也无法同时提高硅橡胶介电、导热性能的问题,采用介电陶瓷钛酸锶(ST)、导热填料氮化硅(Si_3N_4)复合填充制备了Si_3N_4/ST/硅橡胶复合材料,研究了复合材料的介电和导热性能。采用LCR频谱分析仪和导热系数测试仪分别测试复合材料的介电常数和导热系数。结果表明:Si_3N_4与ST的共同填充提高了复合材料的介电性能和导热系数;Si_3N_4填充量为15%(体积分数,下同)时,Si_3N_4/硅橡胶复合材料的介电常数达到最大值5.4F/m;在Si_3N_4填充量保持不变、ST填充量为20%时,复合材料介电常数为纯硅橡胶介电常数的2.3倍,介电损耗保持在0.05以下,导热系数是纯硅橡胶的3倍。  相似文献   

15.
纳米Si_3N_4/双马来酰亚胺/氰酸酯树脂复合材料的性能   总被引:1,自引:0,他引:1  
双马来酰亚胺树脂预聚体改性的氰酸酯树脂(BMI/CE)具有良好的机械性能和热性能,是一种多功能复合材料树脂基体。本文研究了纳米Si3N4的含量对BMI/CE复合材料力学性能和摩擦学性能的影响,并通过扫描电镜和透射电镜分析了复合材料的增韧机理、磨损机理以及纳米Si3N4在基体中的分散性。结果表明:纳米Si3N4可显著改善复合材料的力学性能和摩擦学性能。当纳米Si3N4含量为3.0wt%时,复合材料的力学性能和摩擦学性能最好。相对于BMI/CE树脂基体,复合材料的冲击强度提高了36.0%,弯曲强度提高了21.8%,摩擦系数降低了25.0%,磨损率降低了77.9%。纳米Si3N4粒子可较好地分散在树脂基体中,起到均匀分散应力的作用,从而增强材料的韧性;BMI/CE树脂为塑性变形和粘着磨损,而纳米Si3N4含量为3.0wt%时复合材料为粘着磨损。  相似文献   

16.
采用氮化铝(AlN)和纳米氮化铝(n-AlN)、二氧化硅(SiO2)以及经过硅烷偶联剂(KH560)处理的AlN和SiO2与氰酸酯(CE)树脂共混,设计制备了AlN/CE,n-AlN/CE,AlN-SiO2/CE和AlN(KH560)-SiO2(KH560)/CE复合材料。研究了填料的种类、粒径、含量和表面性质对复合材料导热性能、介电性能的影响。结果表明:填料对复合材料的导热性能有显著影响,用n-AlN和AlN混合填充CE,不同粒径的AlN可以形成紧密堆砌而提高热导率λ。高含量的AlN添加到CE中会提高复合材料的介电常数,但将SiO2部分取代AlN,能减少介电常数的增加量。  相似文献   

17.
将具有优异介电性能的Ca0.7La0.2TiO3陶瓷填充到氰酸酯(CE)树脂中,通过熔融浇铸技术成功制备了Ca0.7La0.2TiO3/CE复合材料。结果表明,不同Ca0.7La0.2TiO3填料体积分数的复合材料微观结构致密。填料体积分数为40vol%时,获得了高介电常数(ε)和低介电损耗(tanδ) (ε=25.7,tanδ=0.0055, 10 GHz)的复合材料, 且弯曲强度达到130 MPa,同时材料的导热系数提高到0.8601 W/(m·K),可有效进行散热。TGA结果表明,相比于CE树脂,复合材料具有更高的热稳定性,在高频通信、集成电路等领域具有良好的应用前景。   相似文献   

18.
采用半连续种子乳液聚合方法制备了以聚丙烯酸正丁酯(PBA)为核、聚甲基丙烯酸甲酯(PMMA)为壳、粒径为346 nm的核/壳型改性剂(Poly(BA)/Poly(MMA)),简称PBMMA,改变两种单体的质量比分别为:60/40、65/35、75/25、70/30、80/20,以及调整添加量研究其对氰酸酯树脂(CE)的增韧改性效果。结果表明,该种子乳液聚合反应具有很高的瞬时转化率( 90%)和总转化率( 95%),且改变核/壳质量比对乳液聚合反应过程没有影响。经透射电镜表征发现,PBMMA乳液有明显的核/壳结构。对CE/PBMMA共混物进行了力学性能测试,用扫描电镜观察其断裂表面形貌,并利用动态力学分析研究了CE/PBMMA共混物的分子运动。当核/壳质量比为60/40、添加量为5%(质量分数)时,增韧剂PBMMA在基体中均匀分散并出现脆性-韧性转变点。CE/PBMMA共混物的抗冲击强度是纯CE树脂的3. 78倍,力学性能与断面SEM观察结果一致。  相似文献   

19.
采用增韧剂(A)对氰酸酯树脂(CE)进行了增韧改性,使用溶液浇铸成型制备了改性CE柔性膜。研究了催化剂(B)和增韧剂对CE固化速率和固化温度的影响。与纯CE相比,含有催化剂的CE固化温度大幅度降低、固化速度明显提高。增韧剂的加入降低了CE/B体系的固化温度。固化时间延长,CE/A体系固化程度提高;增韧剂用量增大,改性CE膜的拉伸强度和杨氏模量下降,柔性提高;改变CE与A预聚温度可调整改性CE膜的强度和模量。  相似文献   

20.
采用非等温差示扫描量热法测试了不同升温速率下氰酸酯及氰酸酯/多面体低聚倍半硅氧烷(POSS)复合材料的固化过程,分析了不同升温速率下,POSS对树脂体系固化行为的影响.运用Kissinger法和Flynn-Wall-Ozawa法对杂化树脂固化反应活化能进行了计算.结果表明,POSS对氰酸酯树脂固化具有催化作用,能显著降低树脂固化温度,含10%POSS的杂化体系固化温度可降至212℃;两种不同模型计算的活化能分别为83.30kJ/mol和85.68kJ/mol,与纯氰酸酯相比,杂化树脂的固化活化能和反应级数均有所增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号