首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国粉体技术》2016,(3):62-66
利用水热法制备MnO_2和MnO_2-石墨烯(GNs)复合材料,并分别作为锂离子电池的负极材料,进行XRD、SEM、恒电流充放电(GC)、循环伏安(CV)和交流阻抗(EIS)等测试。结果表明,制备的MnO_2为β-MnO_2,长度为1~2μm,宽度小于200 nm的纳米棒。β-MnO_2-GNs复合材料在0.1 C的电流密度下循环60次的放电比容量为659.8 m A·h/g,放电容量保持率为46.4%,在5C电流密度下,放电比容量保持在418 m A·h/g。  相似文献   

2.
以熔融静电纺丝法制备锂离子电池用聚偏氟乙烯(PVDF)多孔超细纤维隔膜。对隔膜的物理性能、电化学性能以及组装电池性能等进行了测试分析。在静电场和温度的协同作用下,能够生成β相PVDF,促进电解质中锂盐的离子化。与商业隔膜Celgard 2400进行对比,熔融静电纺PVDF隔膜在130℃下受热0.5 h尺寸几乎无变化;孔隙率和吸液率高达83.99%和342.52%,离子电导率可达0.833 m S/cm。组装成半电池测试,初始放电比容量可达157.69 m A·h/g;0.5C下充放电100次后,容量保持率可达84.68%,优于商业隔膜的75.72%;在不同电流密度下测试,均能保持较稳定的放电比容量。  相似文献   

3.
以熔融静电纺丝法制备锂离子电池用聚偏氟乙烯(PVDF)多孔超细纤维隔膜。对隔膜的物理性能、电化学性能以及组装电池性能等进行了测试分析。在静电场和温度的协同作用下,能够生成β相PVDF,促进电解质中锂盐的离子化。与商业隔膜Celgard 2400进行对比,熔融静电纺PVDF隔膜在130℃下受热0.5 h尺寸几乎无变化;孔隙率和吸液率高达83.99%和342.52%,离子电导率可达0.833 m S/cm。组装成半电池测试,初始放电比容量可达157.69 m A·h/g;0.5C下充放电100次后,容量保持率可达84.68%,优于商业隔膜的75.72%;在不同电流密度下测试,均能保持较稳定的放电比容量。  相似文献   

4.
以Ni(CH3COO)2·4H2O和Mn(CH3COO)2·4H2O为原料,分别在400、500℃分解3、7h得到镍锰复合氧化物前驱体,再与锂源Li2CO3混匀,在800℃煅烧12h,600℃退火24h得到LiNi0.5Mn1.5O4正极材料。XRD、SEM、EIS和恒流充放电测试结果表明,在400℃、7h制备的前驱体与Li2CO3合成的LiNi0.5Mn1.5O4性能最佳。室温下以0.1C倍率充放电,首次放电比容量达到141.5mAh/g,循环30次后容量保持率为98.55%;以1C倍率充放电,首次放电比容量为120.34mAh/g,循环30次后放电比容量为112.09mAh/g。  相似文献   

5.
采用无焰燃烧法在500℃反应3 h,然后分别在600、650、700和750℃二次焙烧6 h制备了尖晶石型Li1.02Ni0.05Mn1.93O4正极材料。结果表明,不同焙烧温度制备的Li-Ni共掺材料没有改变LiMn2O4的立方尖晶石结构,且随着焙烧温度的升高,颗粒尺寸变大,结晶性提高。二次焙烧温度为700℃的Li1.02Ni0.05Mn1.93O4单晶多面体晶粒正极材料具有{111}、{110}和{100}面,且电化学性能较优,在1 C倍率下初始放电比容量为108.2 mA·h·g?1,循环500次后的容量保持率为76.8%;在5 C下首次放电比容量可达到99.0 mA·h·g?1,1000次循环后,仍能维持72.1%的容量保持率;在10 C下仍显示出71.3 mA·h·g?1的首次放电比容量及经500次循环后86.4%的容量保持率。并且其具有较大的Li+扩散系数和较小的表观活化能。Li-Ni共掺LiMn2O4单晶多面体材料能够有效抑制Jahn-Teller效应,减小Mn的溶解及增加Li+扩散通道,使材料的晶体结构稳定,提高倍率性能和循环性能。   相似文献   

6.
以Ni(CH3COO)2·4H2O和Mn(CH3COO)2·4H2O为原料,分别在400、500℃分解3、7h得到镍锰复合氧化物前驱体,再与锂源Li2CO3混 匀,在800℃煅 烧12h,600℃退 火24h得 到LiNi0.5Mn1.5O4正极材料。XRD、SEM、EIS和恒流充放电 测 试 结 果 表 明,在400℃、7h制 备 的 前 驱 体 与Li2CO3合成的LiNi0.5Mn1.5O4性能最佳。室温下以0.1C倍率充放电,首次放电比容量达到141.5mAh/g,循环30次后容量保持率为98.55%;以1C倍率充放电,首次放电比容量为120.34mAh/g,循环30次后放电比容量为112.09mAh/g。  相似文献   

7.
以LiAc·2H2O、Mn(Ac)2·4H2O、Ni(Ac)2·4H2O为原料,采用水溶液法合成锂离子电池正极材料LiNi0.5Mn0.5O2和Li1.2Ni0.3Mn0.5O2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)对所得样品的结构和形貌进行表征,并测试了该材料的电化学性能。结果表明,样品LiNi0.5Mn0.5O2首次放电比容量能达到125.6mAh/g,经过30周循环以后,放电比容量为111.2mAh/g,容量保持率为96.2%;而富锂样品Li1.2Ni0.3Mn0.5O2首次放电比容量能达到187.2mAh/g,经过30周循环以后放电比容量为184.5mAh/g,容量保持率为98.6%,远高于富锂前样品。另外,富锂后的样品Li1.2Ni0.3Mn0.5O2倍率性能优于富锂前。  相似文献   

8.
以高耐热、高强度的聚醚酰亚胺(PEI)为芯层材料,以电解液亲和性和界面稳定性优良的聚偏氟乙烯(PVDF)为壳层材料,构建了一种具有同轴结构的大倍率、高耐热PEI-PVDF纳米纤维锂离子电池隔膜。通过SEM、TEM、TGA、电化学工作站、电池测试系统对PEI-PVDF同轴隔膜的微观形貌和性能进行测试与表征。结果表明:PEI-PVDF同轴纤维具有清晰的芯壳结构,与商业隔膜相比,PEI-PVDF同轴隔膜具有优异的热稳定性,在180℃下处理2 h,尺寸稳定并未发生热收缩;吸液率达到520%;电化学稳定性优异,电化学窗口达到5.0 V;离子电导率达到2.3 mS·cm-1;采用PEI-PVDF隔膜组装的锂离子电池在8 C的放电流下放电比容量仍能达到107 mAh·g-1,再回到0.2 C时恢复到原始比容量的95.4%,且电池在1 C电流下循环100次后容量保持率高达92.5%,PEI-PVDF隔膜表现出的大倍率、高耐热的特点说明该纤维膜是一种高功率、高安全的锂离子电池隔膜。   相似文献   

9.
为了充分利用纳米纤维膜的多孔特性,同时克服其低机械强度的缺陷,以聚丙烯腈(PAN)为主要原料,采用静电纺丝法在石墨电极表面制备PAN纳米纤维膜,形成隔膜-电极一体化结构单元(SAA),并对SAA的孔道结构、力学性能、电解液性能、热尺寸稳定性及电池性能进行系统研究.结果表明:SAA中PAN隔膜与石墨电极的粗糙表面结合紧密,PAN隔膜呈现出发达的孔道结构,电解液亲和性良好;在150℃热处理0.5 h,SAA表面隔膜的热收缩率小于2%,显著优于市售聚烯烃隔膜.基于良好的理化特性,SAA装配的钴酸锂全电池表现出优异的循环容量和倍率容量保持性,如在0.2 C下,经历200次循环后电池的放电容量保持率为98%,在32 C下电池的放电容量为0.5 C下的44.3%.因此,电极表面直接制备纳米纤维膜可形成完整的隔膜-电极一体化单元,在充分发挥纳米纤维膜优势的同时,可优化电极与隔膜的界面相容性、改善电池的充放电性能,并能够提高电池的装配效率.  相似文献   

10.
采用喷雾干燥-碳热还原法制备了Li3V2(PO4)3/C正极材料.考察了不同喷雾条件对产物组成及电化学性能的影响.通过XRD、SEM、TEM和电化学性能测试方法等进行了表征.结果表明:通过二次喷雾干燥制备的前驱体,经过750℃热处理12h制得了平均粒径小于0.5μm 的Li3V2(PO4)3/C复合材料.在室温下,C/5、1C和5C倍率的放电比容量分别为121.9、114.6和104.6mAh·g-1,50次循环后,容量保持率均接近100%,几乎无衰减,具有优异的循环稳定性和容量保持率.  相似文献   

11.
针对富锂锰基材料容量保持率不高,倍率性能不好等问题,以Al2O3作为Al源,通过高温固相法制备A13+掺杂的Li1.104-3xAlxMn0.56Ni0.24O2(0≤x≤0.01)正极材料。XRD结果表明掺杂的Al3+成功代替部分Li+进入到富锂锰基正极材料的晶格中。电化学性能测试表明A13+掺杂抑制了Li1.104Mn0.56Ni0.24O2材料在循环过程中电压衰减,同时提高了它的循环性能和倍率性能。Li1.0965Al0.0025Mn0.56Ni0.24O2材料在0.2 C电流密度下循环100次后,放电比容量为234.42 mA·h/g,其容量保持率高达86.32%,而未掺杂的Li1.104Mn0.56Ni0.24O2材料容量保持率仅为67.27%。  相似文献   

12.
采用改性Hummers法制备了氧化石墨烯和通过化学还原法还原氧化石墨制得石墨烯,及以石墨烯作为正极材料LiCoO2的导电剂,并研究它们对锂离子电池电化学性能的影响。扫描电镜(SEM)和透射电镜(TEM)结果表明,石墨烯的表面褶皱使其能有效地包裹LiCoO2颗粒,形成面接触的导电界面,从而显著提高了导电性。充放电实验表明,石墨烯的加入有利于提高LiCoO2的电化学反应活性、放电容量和高倍率循环性能。相对于传统的炭黑,LiCoO2的放电容量在0.2 C下提高了10 m Ah/g。石墨烯/LiCoO2电池在1C倍率下,循环300次后,放电容量由145.0 m Ah/g衰减到137.8 m Ah/g,放电容量能保持初始容量的95.1%。石墨烯/LiCoO2电池在20 C倍率下的放电容量达到132.1 m Ah/g,是1 C放电容量的91.1%。  相似文献   

13.
以氢氧化锂、草酸亚铁、纳米二氧化硅、柠檬酸、聚乙烯吡咯烷酮和石墨烯(rGO)为原料,采用溶胶-喷雾干燥法制备了Li2FeSiO4/C/rGO复合正极材料。考察了rGO对Li2FeSiO4结构、形貌和电化学性能的影响。结果表明:Li2FeSiO4/C/rGO复合物表现出优异的电化学性能,在0.2、5和10C下的放电比容量分别为173、138、124mAh/g;5C下循环200次后,其放电比容量保持率为97.1%。  相似文献   

14.
分别采用喷雾干燥法、溶胶-凝胶法和球磨法制备前驱体合成6LiMnPO4·Li3V2(PO4)3/C复合正极材料。利用X-射线衍射、扫描电镜和恒流充放电测试对材料物相、微观形貌和电化学性能进行表征。结果表明,喷雾干燥法处理前驱体制备的复合正极材料,粒径最小(约100nm)且分布均匀,具有最高的电化学性能。0.1C倍率下的放电容量为133mAh/g,40次循环后的容量保持率达到95%,1C倍率下的放电容量为0.1C时的75%,具有较好的循环性能和倍率性能。  相似文献   

15.
《中国粉体技术》2016,(1):63-66
为了大量、方便地制备电化学性能优异的锂离子电池负极材料,利用一步煅烧法制备石墨烯包覆Mn_3O_4纳米复合粉体,采用X射线衍射、扫描电子显微镜、透射电子显微镜对复合粉体进行表征,并进行电化学性能检测。结果表明:石墨烯把Mn_3O_4颗粒很好地包覆在里面;石墨烯包覆Mn_3O_4纳米复合粉体具有优秀的电化学性能,含碳质量分数为13%的石墨烯包覆Mn_3O_4纳米复合粉体首次放电比容量达到859.7 m A·h/g,电流密度为1 600 m A/g时的放电比容量保持在380 m A·h/g,循环100次后放电比容量几乎保持不变。  相似文献   

16.
采用氢氧化物共沉淀法制备出Ni0.43Mn0.57(OH)2前驱体,与Li2CO3混合制备了锂离子电池正极材料Li1.07Ni0.4Mn0.53O2,利用SEM、XRD对所得试样的形貌和晶体结构进行了表征,并研究了材料的电化学性能。结果表明:950℃下保温16h所得Li1.07Ni0.4Mn0.53O2具有良好的倍率性能和循环稳定性,2.75~4.2V、90mA/g(0.5C)下Li1.07Ni0.4Mn0.53O2的首次放电比容量达到127.11mAh/g,100次循环后容量保持率为98.99%。  相似文献   

17.
以FePO4·xH2O、V2O5、NH4H2PO4和Li2CO3为原料,以乙二酸为还原剂,在常温常压下经机械活化并还原嵌锂,形成无定形的5LiFePO4·Li3V2(PO4)3前驱体混合物,然后低温热处理合成出晶态的复合正极材料5LiFePO4·Li3V2(PO4)3.分别研究了复合材料的物相结构、形貌、电化学性能.SEM图像表明合成的材料粒径小、分布均匀,一次粒径为100~200nm.充放电测试结果表明,650℃烧结12h制得的复合正极材料5LiFePO4·Li3V2(PO4)3电化学性能优良,1C放电比容量高达158mAh/g,达到该复合材料的理论比容量(156.8mAh/g).复合材料具有良好的倍率性能和循环性能,在10C放电比容量高达114mAh/g,100次循环后容量几乎无衰减.循环伏安测试表明,复合材料的脱嵌锂性能优良,且明显优于单一的LiFePO4和Li3V2(PO4)3.  相似文献   

18.
以镍、锰氧化物和碳酸锂为原料,采用高温固相法直接合成高电压正极材料镍锰酸锂LiNi0.5Mn1.5O4。主要考察了烧结温度、烧结时间和Li/M等因素对工艺的影响。结果表明:在烧结温度为800℃,烧结时间为15h,Li/M为0.53时,合成的镍锰酸锂材料的综合性能达到了最佳。在此合成条件下合成的镍锰酸锂材料的1C放电比容量为129.53mAh/g,50次循环后1C放电比容量为122.60mAh/g,50次循环容量保持率94.56%,证明电池的循环性能良好。  相似文献   

19.
静电纺丝制备聚偏氟乙烯(PVDF)锂离子电池隔膜电化学性能一般,可采用混纺增强其电化学性能。采用二氧化钛(TiO_2)与PVDF混纺,制得TiO_2/PVDF锂离子电池隔膜,研究不同TiO_2的添加量对TiO_2/PVDF锂离子电池隔膜性能的影响,考察其力学性质、离子电导率、放电比容量和循环性能。结果表明:在添加1.5%(wt,质量分数)TiO_2条件下,制得的TiO_2/PVDF锂离子电池隔膜的孔隙率高达52.54%,吸液率403.70%,离子电导率4.2×10~(-4)S/cm;在0.5C条件下放电比容量为134.0mAh/g,循环25次条件下,TiO_2/PVDF锂离子电池隔膜的放电比容量仍有130.0mAh/g,放电比容量的波动小,循环稳定性好。  相似文献   

20.
采用高压水热法制备锂离子电池正极材料Li 2MnSiO 4,研究压强、反应温度和前驱体浓度对合成Li 2MnSiO 4的影响,并进一步研究碳包覆前后Li 2MnSiO 4的电化学性能。通过X射线衍射、扫描电镜、透射电镜、充放电测试和交流阻抗等方法对样品的结构、形貌和电化学性能进行表征分析。结果表明:采用水热法在高压高温条件下可以合成高纯度的Li 2MnSiO 4材料,提高前驱体浓度有助于形成粒径较小的Li 2MnSiO 4纳米颗粒。电化学性能测试显示碳包覆后的 Li 2MnSiO 4/C比Li 2MnSiO 4具有更高的比容量,在0.1C (电流密度为33.3mA·g -1 )下首次放电比容量可达178.6mAh·g -1 ,循环50次后放电比容量为97.1mAh·g -1 ,容量保持率为54.4%。同时,Li 2MnSiO 4/C还具有比Li 2MnSiO 4更小的电荷转移阻抗和更高的锂离子扩散系数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号