首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用静电纺丝技术制备了聚芳醚砜酮(PPESK)纤维膜用作锂离子电池隔膜,并对PPESK纤维膜进行热处理以提高隔膜的拉伸强度和弹性模量,经320℃热处理后的隔膜纤维之间的黏结作用有效增强,隔膜的拉伸强度提高至19.8MPa。通过扫描电镜观测、差示扫描量热分析、交流阻抗测试和充放电测试等手段表征了PPESK隔膜的表面形貌、热稳定性能、电化学性能和相应的电池充放电循环性能。实验结果表明,热处理PPESK隔膜显示出良好的电解液吸收性能和热稳定性;电解液浸润的热处理PPESK隔膜相比Celgrad 2400PP隔膜具有更高的离子电导率(2.38mS/cm)和更低的界面电阻(170Ω);使用热处理PPESK隔膜装配的扣式电池展现出较高的充放电容量和稳定的循环性能。  相似文献   

2.
静电纺丝纤维膜因为具有高孔隙率、大的比表面积和良好的电解液润湿性而被广泛地应用于锂离子电池隔膜的研究,但对于锂离子电池安全性能至关重要的隔膜穿刺强度的研究还比较匮乏。本工作采用静电纺丝技术制备得到PPESK纤维膜,并采用热处理提高纤维膜的力学性能,然后通过穿刺实验测得一系列不同厚度热处理PPESK纤维膜的穿刺强度,并建立起穿刺强度与纤维膜厚度之间的线性关系。通过对穿刺破坏区域的微观分析,探究热处理PPESK纤维膜穿刺破坏机理,结果表明:各向同性的热处理PPESK纤维膜穿刺过程是由纤维受挤压产生弯曲、变形和断裂造成的破坏,破坏区域呈近似圆形穿刺孔,而PP微孔膜的破坏区域则是由脆性断裂造成的长条形裂缝,相比之下热处理PPESK纤维膜的穿刺破坏过程更加缓和,可以降低锂枝晶刺穿隔膜带来的风险,但是热处理PPESK纤维膜的穿刺强度还有待增强。  相似文献   

3.
为了改善传统静电纺丝无纺布纤维膜力学性能较差的缺点,采用静电纺丝和静电喷雾技术相结合的方法,同时进行静电纺PPESK浓溶液和PVDF稀溶液,制备得到PPESK纤维/PVDF珠粒复合锂电池隔膜,并在160℃进行热压后处理。通过扫描电子显微镜、万能拉伸试验机、电化学工作站及充放电测试仪等表征复合锂电池隔膜的微观结构、力学性能、离子电导率和相应的电池充放电性能。结果表明,该复合隔膜具有良好的电解液润湿性,室温下离子电导率达到1.92mS·cm-1,PVDF珠粒均匀地分布在PPESK纤维中,珠粒经热压产生微熔融有效增强了纤维之间的黏结力,使复合膜的力学强度提高到13.2MPa。此外,使用复合隔膜装配的电池展现出较高的放电比容量和稳定的循环性能。  相似文献   

4.
为了改善锂离子电池的高温安全性和充放电性能,以聚苯醚树脂为成膜材料,采用静电纺丝技术制备了纳米纤维锂电隔膜,对隔膜的形貌、结构、电解液亲和性和耐高温性进行了系统测试,并将该纳米纤维膜装配到电池中进行充放电性能测试。结果显示:聚苯醚隔膜的纳米纤维直径约为260nm,纤维交错形成均匀的孔道(平均孔径约500nm),其孔隙率达到74%以上,为聚烯烃隔膜的2倍左右;聚苯醚树脂的电解液亲和性和高孔隙率强化了隔膜的电解液吸收和保持能力,其吸液率约为310%;在150℃,60min的热处理条件下,该隔膜的尺寸收缩率几乎为零。电池性能测试表明,聚苯醚基纳米纤维膜显示出更优的放电倍率性能和循环性能。  相似文献   

5.
为了充分利用纳米纤维膜的多孔特性,同时克服其低机械强度的缺陷,以聚丙烯腈(PAN)为主要原料,采用静电纺丝法在石墨电极表面制备PAN纳米纤维膜,形成隔膜-电极一体化结构单元(SAA),并对SAA的孔道结构、力学性能、电解液性能、热尺寸稳定性及电池性能进行系统研究.结果表明:SAA中PAN隔膜与石墨电极的粗糙表面结合紧密,PAN隔膜呈现出发达的孔道结构,电解液亲和性良好;在150℃热处理0.5 h,SAA表面隔膜的热收缩率小于2%,显著优于市售聚烯烃隔膜.基于良好的理化特性,SAA装配的钴酸锂全电池表现出优异的循环容量和倍率容量保持性,如在0.2 C下,经历200次循环后电池的放电容量保持率为98%,在32 C下电池的放电容量为0.5 C下的44.3%.因此,电极表面直接制备纳米纤维膜可形成完整的隔膜-电极一体化单元,在充分发挥纳米纤维膜优势的同时,可优化电极与隔膜的界面相容性、改善电池的充放电性能,并能够提高电池的装配效率.  相似文献   

6.
利用不同硅烷偶联剂改性纳米SiO2,并将改性物分别加入聚(偏氟乙烯-六氟丙烯)共聚物(PVdF-HFP)溶液中,制备成锂离子电池隔膜。FT-IR和TGA测试表明,偶联剂已成功接枝到纳米SiO2表面;SEM、拉伸、热收缩和交流阻抗测试结果显示,电池隔膜中纳米SiO2的分散性、膜的机械强度、热收缩及电导率都有明显的改善;电化学测试结果表明,含改性纳米SiO2的PVdF-HFP电池隔膜的放电比容量和循环稳定性均比含未改性纳米SiO2的电池隔膜有所提高,尤其是含γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)改性SiO2的PVdF-HFP电池隔膜,各项性能均有较大的提高,其拉伸强度可达8.63MPa,离子电导率高达1.53×10-3 S/cm,放电比容量在充放电循环100次以内一直保持在142mAh/g以上。  相似文献   

7.
为了提高锂离子电池的安全性,文中选择聚偏氟乙烯(PVDF)为聚合物基体,八氯丙基低聚倍半硅氧烷(POSS-(C_3H_6Cl)_8)为改性剂,通过静电纺丝法制备POSS-(C_3H_6Cl)_8复合PVDF聚合物隔膜(EPS)。表征了纺丝膜的形貌、力学性能,测试了电化学窗口和Li/LiFePO_4纽扣电池的充放电循环稳定性。结果表明,当POSS-(C_3H_6Cl)_8的加入量为10%时,静电纺丝纤维薄膜的拉伸强度和断裂伸长率分别比纯PVDF提高了106.4%和27.2%;室温下的离子传导率为3.8×10~(-3)S/cm,比纯PVDF提高了97.4%;电化学稳定窗口为5.7 V。用该聚合物隔膜组装的锂离子电池具有良好的循环稳定性和倍率性能。  相似文献   

8.
以聚丙烯隔膜为基材,单面涂覆2.0~3.0μm的Al_2O_3/P(MMA-BA)复合涂层制备改性隔膜。对隔膜的穿刺强度、透气性、热稳定性、耐热收缩性、表面形貌、吸液性和电化学性能进行表征,发现复合涂层中含有大量Al_2O_3能提高隔膜的热稳定性和耐热收缩性,而且涂层的多孔结构有利于电解液润湿隔膜、并提高离子电导率,组装的电池的循环与倍率性能也有显著提升。  相似文献   

9.
采用熔体静电纺丝方法制备了茂金属线性低密度聚乙烯(mLLDPE)无纺纤维,并与聚偏氟乙烯(PVDF)溶液静电纺纳米纤维复合改性,成功制备出mLLDPE无纺纤维基锂电池隔膜。对该锂电池隔膜的孔隙率、热稳定性、充放电性能测试结果表明,该隔膜的孔隙率在54%~62%,首次放电比容量为70 mA·h/g,且循环稳定性良好,性能优于同等测试条件下的商业锂电池隔膜,可以应用于锂电池。  相似文献   

10.
为了提高锂离子电池用聚烯烃微孔膜的综合性能, 在商用Celgard膜表面涂布ZrO2无机涂层, 粘结剂选用电池用聚偏氟乙烯。对比分析涂覆前后的隔膜发现, ZrO2涂层可以显著提高Celgard膜的热尺寸稳定性和热熔化温度, 对提高锂离子电池安全性起到积极作用。同时无机涂层还能明显改善隔膜对电解液的浸润性, 复合隔膜具有更好的保液能力, 以涂有ZrO2涂层的Celgard膜作为隔膜组装锂离子电池,可以显著提高长期充放电循环时电池容量保持率。  相似文献   

11.
先采用高压静电纺丝技术制备二氧化钛/聚酰胺酸(TiO2/PAA)复合纤维膜,然后对其进行热亚胺化处理制备出二氧化钛/聚酰亚胺(TiO2/PI)复合纤维隔膜。使用扫描电子显微镜(SEM)、傅里叶红外光谱分析仪(FTIR)、热失重分析仪和电化学工作站测试了TiO2/PI复合纤维隔膜的基本性能和电化学性能,结果表明:隔膜具有明显的三维网状结构,与未改性的纯PI隔膜相比,改性后TiO2/PI复合纤维隔膜的拉伸强度、孔隙率和吸液率分别提高到16.74 MPa、77.5%和550%;其热收缩性能较好,整体电化学性能优异。制备的LiFePO4(磷酸铁锂正极)/TiO2/PI/C(石墨负极)电池具有优异的循环稳定性和高放电容量,在1 C条件下进行100个循环后,其库伦效率在25℃和120℃高达96.7%和90.7%。  相似文献   

12.
以氧化包覆改性的聚丙烯纤维和棉纤维为主要材料,采用湿法无纺布抄造的方法制备出了锂离子电池隔膜.研究了不同纤维配比对隔膜的抗张强度、孔隙率、吸液率、保液率和热收缩等性能的影响,并对锂离子电池隔膜的形貌和电导率进行了分析.结果表明,当棉纤维与改性聚丙烯纤维的质量配比为1∶1时,其抗张强度达到1.647 1kN/m,孔隙率为45.45%,吸液率和吸液高度分别为687.3%和39.2mm,相应的保液率为121.3%,得到了性能良好的锂离子电池隔膜.通过热收缩性能测试得出,加入棉纤维可以提高隔膜的热稳定性.SEM结果表明,改性聚丙烯纤维与棉纤维之间相互交织形成隔膜,所得隔膜在电解液中的电导率为2.39×10~(-3) S/cm.  相似文献   

13.
针对传统聚烯烃类锂电隔膜的耐温性差和电解液亲和性差的问题,以沸石粒子、硅溶胶和乙二胺四乙酸为主要原料,通过烧结工艺制备综合性能优异的沸石基锂离子电池隔膜。结果表明:与商用聚乙烯膜相比,本实验制备的沸石隔膜具有发达的孔道结构,其耐热性和电解液润湿性得到显著提升;经过160℃,0.5h的热处理后,沸石隔膜的热收缩率为0,而聚乙烯膜已经完全融化,沸石隔膜的电解液接触角接近0°,聚乙烯膜的接触角高达35°。受益于良好的孔道结构和电解液亲和性,沸石隔膜所装配电池在倍率放电容量和循环放电容量等方面均优于传统聚烯烃膜。  相似文献   

14.
《功能材料》2021,52(9)
合成了硅氧烷封端的聚氧化乙烯,并通过硅氧键交联的方法制备了柔性且兼具优异拉伸强度的自支撑膜材料。将其与LiPF_6电解液配合制备了凝胶型聚合物电解质,并研究了其电化学性能。研究发现,该凝胶型聚合物电解质室温电导率相比商用隔膜(celgard 2500)有着一定提升,达到1.36×10~(-3) S/cm(30℃)。线性扫描测试其电化学稳定性达到4.2 V(vs Li~+/Li)。Li/LiFePO_4电池性能首次放电容量达到134.3 mAh/g(0.5C,25℃),充放电循环200圈后未发现明显容量损失,且在大倍率充放电(2C,25℃)测试下,放电比容量仍具有118.5 mAh/g,具有出色的倍率性能。结果表明,该硅烷改性交联聚醚凝胶电解质具有较好的研究和应用前景。  相似文献   

15.
以聚乙二醇单甲醚甲基丙烯酸酯(PEGMEMA)为单体,八乙烯基多面体齐聚倍半硅氧烷(OVPOSS)为交联剂,通过紫外光照引发聚合,形成交联结构,并与线型聚偏氟乙烯-六氟丙烯共聚物(PVd F-HFP)形成一种新型的凝胶聚合物隔膜。为了进一步提高聚合物膜的力学强度和电化学性能,用纤维素无纺布和致孔剂对其改性。实验结果表明,改性后隔膜的力学性能、离子电导率和孔隙率都得到明显的提高,拉伸强度最高达到10.6 MPa。与商用聚乙烯膜、单一的PVd FHFP多孔膜和未用无纺布改性的隔膜比较,聚合物改性后的隔膜在150℃仍可以保证尺寸稳定。采用改性隔膜组装的锂离子电池拥有更好的循环和倍率放电性能,在0.5 C/0.5 C的充放电条件下能够稳定循环,最高放电比容量可达到145m A·h/g。  相似文献   

16.
以聚乙二醇单甲醚甲基丙烯酸酯(PEGMEMA)为单体,八乙烯基多面体齐聚倍半硅氧烷(OVPOSS)为交联剂,通过紫外光照引发聚合,形成交联结构,并与线型聚偏氟乙烯-六氟丙烯共聚物(PVd F-HFP)形成一种新型的凝胶聚合物隔膜。为了进一步提高聚合物膜的力学强度和电化学性能,用纤维素无纺布和致孔剂对其改性。实验结果表明,改性后隔膜的力学性能、离子电导率和孔隙率都得到明显的提高,拉伸强度最高达到10.6 MPa。与商用聚乙烯膜、单一的PVd FHFP多孔膜和未用无纺布改性的隔膜比较,聚合物改性后的隔膜在150℃仍可以保证尺寸稳定。采用改性隔膜组装的锂离子电池拥有更好的循环和倍率放电性能,在0.5 C/0.5 C的充放电条件下能够稳定循环,最高放电比容量可达到145m A·h/g。  相似文献   

17.
采用同轴静电纺丝技术,以聚偏氟乙烯-六氟丙烯(PVDF-HFP)为壳层,醋酸纤维素(CA)为芯层,制备高效CA/PVDF-HFP复合纳米纤维膜,然后采用0.05mol/L的LiOH溶液对复合纳米纤维膜进行水解,得到纤维素/PVDFHFP复合纤维膜。分别采用差示扫描量热法、扫描电镜、透射电镜、接触角测量仪以及电化学工作站等对样品的性能进行了表征。结果表明:所得复合纳米纤维为壳核结构,并且其热稳定性好、孔隙率高、对电解液亲和性优良,将其用作锂离子电池隔膜,隔膜与锂电极之间的界面电阻低,因此可以推断,该复合纤维膜在锂离子电池隔膜领域的应用前景广泛。  相似文献   

18.
采用电化学工作站测试了1 mol/L LiODFB (LiPF6) EC+DMC+EMC(1:1:1 质量比)电解液的热稳定性及其对铝箔集流体的腐蚀性, 测试了LTO/Li电池的CV曲线及EIS图谱, 并采用电池性能测试系统测试电池的倍率性能和循环性能, 探索LiODFB电解液与LiFePO4/LTO电极的相容性。结果表明: 在室温和60℃条件下, LiODFB电解液及其对铝箔的稳定性均优于LiPF6电解液, 以LiODFB和LiPF6为电解液的LTO/Li电池的CV曲线都具有单一的氧化还原峰, 且其首次充放曲线均具有稳定的充放电平台, 室温时以LiFePO4/LTO为电极的LiODFB电池和LiPF6电池在0.5C和1C倍率的电池性能相差不大; 室温和60℃时LiODFB电池的循环性能均优于LiPF6电池, 60℃时尤为显著。  相似文献   

19.
采用湿法抄造和浸渍涂布工艺制备锂离子电池PET/TENCEL无纺布陶瓷隔膜,并采用孔径分析、热失重分析、热烘箱试验、扫描电镜和电池充放电循环性能检测等方式表征隔膜性能和电池性能。结果表明:当基材组份为50%(wt,质量分数,下同)PET纤维、30%TENCEL纤维和20%Al2O3粉,基材定量和陶瓷涂布量均为15g/m2时,所制备SP-1无纺布陶瓷隔膜的孔隙率和孔径分别为45.8%和0.07μm,且在210℃和1h条件下不发生热收缩;在1C充放电循环50次条件下,使用SP-1隔膜的锂离子电池容量保持率为83.4%,优于PE隔膜。  相似文献   

20.
以高耐热、高强度的聚醚酰亚胺(PEI)为芯层材料,以电解液亲和性和界面稳定性优良的聚偏氟乙烯(PVDF)为壳层材料,构建了一种具有同轴结构的大倍率、高耐热PEI-PVDF纳米纤维锂离子电池隔膜。通过SEM、TEM、TGA、电化学工作站、电池测试系统对PEI-PVDF同轴隔膜的微观形貌和性能进行测试与表征。结果表明:PEI-PVDF同轴纤维具有清晰的芯壳结构,与商业隔膜相比,PEI-PVDF同轴隔膜具有优异的热稳定性,在180℃下处理2 h,尺寸稳定并未发生热收缩;吸液率达到520%;电化学稳定性优异,电化学窗口达到5.0 V;离子电导率达到2.3 mS·cm-1;采用PEI-PVDF隔膜组装的锂离子电池在8 C的放电流下放电比容量仍能达到107 mAh·g-1,再回到0.2 C时恢复到原始比容量的95.4%,且电池在1 C电流下循环100次后容量保持率高达92.5%,PEI-PVDF隔膜表现出的大倍率、高耐热的特点说明该纤维膜是一种高功率、高安全的锂离子电池隔膜。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号