共查询到20条相似文献,搜索用时 15 毫秒
1.
董建成张权王清清蔡以兵魏取福 《高分子材料科学与工程》2018,(12):138-142
利用静电纺丝技术制备纳米醋酸纤维素膜(CA),经高温热处理后碱液水解得再生纤维素(RC),然后以二乙烯三胺(DETA)为间隔臂接枝了原卟啉(PPIX),制备了PPIX接枝纳米纤维膜(RC-PPIX)。通过差示扫描量热分析、拉伸断裂仪、扫描电镜探究了CA热处理前、后及水解后的热学性能、力学性能及形貌变化。利用红外光谱、X射线光电子能谱表征了CA在反应过程中的化学结构变化,最后评价了RC-PPIX纤维膜对大肠杆菌的灭活作用。实验结果表明,热处理后的CA纳米纤维彼此熔合在一起,同时纳米纤维结构保持不变,纤维膜的力学强度显著提高;成功接枝制备了光敏抗菌型RC-PPIX纳米纤维膜,其对大肠杆菌的抗菌效果随着光照时间的延长,在氙灯光照30min时,其对大肠杆菌的灭活率可达99.99%。 相似文献
2.
为了拓展天然纤维素材料的应用,在综合国内外对天然纤维素材料、纳米材料和抗菌材料相关研究的基础上,首先,利用LiCl/二甲基乙酰胺(DMAC)溶剂体系配置了不同共混比例的天然纤维素/聚丙烯腈纺丝液,采用静电纺丝技术制备了纤维素/聚丙烯腈纳米纤维。然后,用铜氨溶液对纳米纤维进行了抗菌处理,制备了具有一定抗菌功能的纤维集合体。最后,采用SEM观察不同共混比例下纳米纤维的微观形貌;采用TG和DSC表征其热性能;采用FTIR和表面接触角测量仪表征共混后纳米纤维的化学组成和亲水性的变化;采用振荡法测定纳米纤维的抗菌性能。结果表明:通过静电纺丝技术可制得直径在200~400nm范围内的纤维素/聚丙烯腈纳米纤维。随着纤维素含量的提高,纳米纤维的表面越来越粗糙,粘连愈加严重,且直径离散度也变大。当纤维素与聚丙烯腈的共混质量比大于75∶25时,纤维的直径标准偏差由纯聚丙烯腈纤维的100nm以下变为150nm以上。纤维素/聚丙烯腈纳米纤维具有良好的热性能,与纯纤维素纳米纤维相比热稳定性有一定提高,当纤维素与聚丙烯腈的共混质量比为25∶75时热稳定性最好。纤维素/聚丙烯腈纳米纤维的亲水性优于普通医用纱布的。经过铜氨溶液抗菌处理的纳米纤维具有良好的抗菌性能,对金黄色葡萄球菌和大肠杆菌的抑菌率分别为82%和75%。 相似文献
3.
《高分子材料科学与工程》2019,(10)
以离子液体为溶剂,采用干喷-湿纺法制备再生纤维素纤维,通过正交设计和系统试验考察了气隙长度、喷头拉伸比、凝固浴浓度和凝固浴温度等工艺参数对再生纤维素纤维力学性能的影响,探究了该体系的最佳纺丝工艺条件,并对此条件下的产物进行表征分析。结果表明,对于该体系,纺丝工艺参数中凝固浴浓度和拉伸比对纤维的拉伸强度、初始模量的影响较大,凝固浴温度对纤维断裂伸长影响较大。此外,最佳工艺条件下制备的再生纤维素纤维具有较高的结晶度,较好的热稳定性及光洁的表面形态。 相似文献
4.
《化工新型材料》2017,(7)
以细菌纤维素为原料载体,硼氢化钾为还原剂,采用水热还原法制得载钯细菌纤维素纳米纤维(Pd/BCF)。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、原子力显微镜(AFM)、X射线衍射(XRD)、能量色散X射线分析(EDX)、傅里叶变换红外光谱学(FT-IR)和热重分析仪(TGA)表征手段,研究了载钯细菌纤维素纳米纤维材料的微观形态、结晶度、组成成分以及热稳定性,均达到了相对理想的效果。反应3h后,钯纳米颗粒(PdNPs)在纤维上均匀分布,粒径约55nm。纳米纤维上Pd单质载量约19.40%,且Pd/BCF材料热稳定性较高,能承受250℃的高温。 相似文献
5.
为了研究醋酸纳米纤维膜的形貌及截滤性能,采用静电纺丝技术制备出纺丝液质量分数分别为11%、13%和15%的纳米纤维膜.利用原子力显微镜(AFM)、扫描电镜(SEM)及相关分析软件分析了不同质量分数纳米纤维膜的直径分布及形态.在实验范围内,醋酸纳米纤维的平均直径为200~900nm,均匀性较好,具有较好的可纺性.同时研究了纺丝液不同质量分数的纳米纤维膜的吸水和滤茵性能,测试结果表明,纳米纤维膜具有优良的滤菌性能,且随着纺丝液质量分数的提高,吸水和滤茵性能均有不同程度的下降,这与纳米纤维直径的变化是一致的. 相似文献
6.
采用高碘酸钠氧化棉织物,在织物表面生成醛基,然后和尿素反应生成席夫碱.经硼氢化钠还原及次氯酸钠溶液漂洗后,织物表面生成了抗菌性的N-氯代酰胺.研究了氯漂工艺对织物上氯含量的影响,考查了织物表面氯胺的可再生性,采用振荡瓶法测试了改性织物的抗菌性.红外光谱测试表明,织物表面的醛基和尿素反应生成了席夫碱;经过硼氢化钠还原和次氯酸钠溶液漂洗后,在织物表面生成了氯胺.改性织物较适宜的氯漂工艺为:20℃、pH 10.0、在0.50%活性氯的次氯酸钠溶液中漂洗15min.织物表面的氯胺具有较好的可再生性.当织物的氯含量≥0.71mg/g时,对大肠杆菌和金黄色葡萄球菌的杀灭率均达到100%. 相似文献
7.
以微晶纤维素(MCC)为原料,采用酸水解法制备纳米纤维素(NCC),再以N,N-羰基二咪唑(CDI)活化纳米纤维素表面的羟基,最后将其与环氧氯丙烷进行接枝反应,得到接枝环氧基的纳米纤维素(NCC-g-ECH)。采用透射电镜、红外光谱、溶解性、接枝率、X射线衍射对所制得的样品NCC和NCC-g-ECH的结构和性能进行表征。结果表明,实验制得的NCC符合纳米尺寸; NCC-g-ECH的红外图中出现明显的环氧基峰; NCC-g-ECH的接枝率最大达到8. 47%;与NCC相比,样品NCC-g-ECH在丙酮中能均匀、稳定地分散; NCC和NCC-g-ECH均为纤维素Ⅰ晶型,NCC-g-ECH的结晶度比NCC减小8. 59%。 相似文献
8.
9.
《化工新型材料》2017,(9)
以聚乙二醇甲基丙烯酸甲酯(PEGMEMA)和甲基丙烯酸甲酯(MMA)为原料,用偶氮二异丁腈引发合成聚甲基丙烯酸甲酯-g-聚乙二醇甲基丙烯酸甲酯(PMMA-g-PEO)共聚物。通过静电纺丝制备了PMMA-g-PEO纳米纤维膜,并通过表面改性制备了功能梯度材料。通过正交设计,探究了水解工艺中浓度、温度和时间3个因素对纤维膜吸附性能的影响,利用傅里叶红外光谱与扫描电镜分别对纳米纤维改性前后的结构与外观形态进行表征。结果表明:引入的亲水性支链有效地改善了PMMA的可纺性;在NaOH浓度为0.5mol/L,反应时间为8h,反应温度为70℃的水解工艺条件下,功能化纤维膜具有较好的铅离子吸附能力,吸附容量为113.85mg/g。 相似文献
10.
首先利用制浆法从剑麻纤维提取剑麻纤维浆(SFCP),然后通过对其化学预处理并结合高速搅拌的方法简便、快速、高效地制备了分散性良好具有高长径比的剑麻纤维素纳米纤(SNFC)。研究了氢氧化钠、SFCP以及氯乙酸三者用量比、氢氧化钠浓度和预处理反应时间对SFCP表面羧基接枝率、SNFC产率的影响。采用红外光谱、扫描电子显微镜、透射电子显微镜、X射线衍射和热重分析对所制的SFCP和SNFC的结构形态及性能进行了表征。结果表明,所得的SFCP具有纤维素I的晶型结构,直径约10~20μm,长度约1~2mm。羧基化过程的最佳优化方案是氢氧化钠水溶液的浓度为10%,SFCP、NaOH、氯乙酸三者的质量比为2∶1∶1,反应时间为3h,SNFC的产率最高可达91.7%。所得的SNFC仍然具有纤维素I的晶型结构,结晶度为76.9%,直径在3~5nm,长度在几百纳米到几微米。SNFC的最初热分解温度为248.4℃,比SFCP的起始分解温度321.7℃有所降低,但是700℃时的残炭率达到23.9%。 相似文献
11.
以微晶纤维素(MCC)为模板,氯化镉、硫化钠等为原料,在水的悬浮液中,用原位复合法制备了MCC/CdS纳米复合材料。对复合反应条件进行了初步研究,探讨了Cd2+浓度、Cd2+吸附时间及超声功率对复合反应的影响。研究表明,适当提高Cd2+吸附时间及超声功率有利于提高复合材料中硫化镉颗粒的复合量,Cd2+浓度对复合量的影响是显著的。应用X射线衍射(XRD),扫描电镜(SEM),红外光谱(FT-IR),光致荧光光谱(PL)对MCC/CdS复合材料进行了表征。结果表明,复合在微晶纤维素上的CdS颗粒大小均一,且均匀分布在微晶纤维素模板表面;制备的复合材料具有一定的荧光特性。 相似文献
12.
13.
甲壳素纳米晶须/聚乳酸复合纤维膜的制备及表征 总被引:1,自引:0,他引:1
采用静电纺丝技术制备了甲壳素纳米晶须/聚乳酸复合纳米纤维膜并对其进行了表征分析.借助扫描电子显微镜(SEM) 及相关测试软件,测出复合纳米纤维平均直径在500~1000nm之间;当甲壳素纳米晶须含量低于7%时,对复合纳米纤维的可纺性及形貌影响较小;但当其含量高于7%时,复合纳米纤维表面变得粗糙.傅立叶红外变换光谱仪(FT-IR)和X射线衍射仪(XRD)观察分析表明,甲壳素纳米晶须已成功加入到聚乳酸纤维中.拉伸试验结果表明,当纳米晶须含量为3%时,复合膜的拉伸强度提高了63.65%,进一步增加纳米晶须含量,其增强作用呈下降趋势,甚至出现负增强. 相似文献
14.
以羽毛角蛋白(FK)和聚乙烯醇(PVA)为原料,水为溶剂,通过静电纺丝技术制备了FK/PVA复合纳米纤维膜.探讨了复合纳米纤维中FK与PVA的相容性,研究了FK的添加对纤维膜微观形貌、结晶度、热稳定性、亲水性等性能的影响.SEM结果表明,在聚合物总质量分数为14%的条件下制备的FK/PVA复合纳米纤维,表面平整光滑,平均直径为250~320 nm,FK含量越大,直径越小.FTIR结果表明,FK与PVA具有良好的相容性,分子间存在氢键作用力.XRD结果表明,FK的加入破坏了PVA分子的规整排列,复合纳米纤维膜的结晶度下降.TG分析与接触角测试结果表明,随着体系中FK配比的增大,复合纳米纤维膜的热稳定性和亲水性均得到提高. 相似文献
15.
静电纺壳聚糖/聚乙烯醇纳米纤维膜的制备及表征 总被引:1,自引:0,他引:1
通过静电纺丝技术首次将溶解在1%(体积分数)超低浓度乙酸溶液中的3%(wt,质量分数,下同)壳聚糖(CS)与溶解在去离子水中的11%聚乙烯醇(PVA)溶液进行混合,在20~22kV高压静电场下制备出直径在70~300nm之间、CS含量高达60%,具有均匀结构的CS/PVA纳米纤维膜。通过旋转流变仪、扫描电镜、X射线衍射仪、红外光谱、热重分析和万能试验机等手段对其混合溶液进行表征。结果表明:CS/PVA纳米纤维膜的形貌与CS和PVA的混合比例有关,当CS含量低于60%时,纤维形貌良好,当CS含量高于60%时,纤维中存在有液滴以及纺锤体。另外,CS与PVA之间存在强有力的氢键作用并具有很好的相容性,PVA可以降低壳聚糖的结晶性利于静电纺过程的进行;并且该CS/PVA纳米纤维膜具有较好的热稳定性和弹性,随着PVA比例的增加其最大拉伸强度可达到9.98MPa。 相似文献
16.
以DMF为溶剂,利用静电纺丝法制备了聚丙烯腈/聚乙烯吡咯烷酮/醋酸铜(PAN/PVP/Cu(OAc)2)复合纳米纤维,并借助于Design Expert软件采用Box-Behnken试验设计法及响应面法分析了不同组分的PAN/PVP/Cu(OAc)2对碳基复合纳米纤维电容的影响,用Solartron1470测其电化学性能.选取PAN、PVP及Cu(OAc)2作为影响电容的3个主要因素,并以电容作为考察对象,建立了二次多元回归模型;利用扫描电子显微镜(SEM)观测了纤维的直径和表面形貌,同时利用XRD分析了碳基复合纳米纤维的物相.结果表明,模型预测的纤维直径与真实值较为符合,说明该模型能有效地预 相似文献
17.
以羽毛角蛋白(FK)和聚乙烯醇(PVA)为原料,水为溶剂,通过静电纺丝技术制备了FK/PVA复合纳米纤维膜。探讨了复合纳米纤维中FK与PVA的相容性,研究了FK的添加对纤维膜微观形貌、结晶度、热稳定性、亲水性等性能的影响。SEM结果表明,在聚合物总质量分数为14%的条件下制备的FK/PVA复合纳米纤维,表面平整光滑,平均直径为250~320nm,FK含量越大,直径越小。FTIR结果表明,FK与PVA具有良好的相容性,分子间存在氢键作用力。XRD结果表明,FK的加入破坏了PVA分子的规整排列,复合纳米纤维膜的结晶度下降。TG分析与接触角测试结果表明,随着体系中FK配比的增大,复合纳米纤维膜的热稳定性和亲水性均得到提高。 相似文献
18.
19.
以常用廉价溶剂N,N-二甲基乙酰胺(DMAc)为介质,以纤维素和尿素为原料,制备了纤维素氨基甲酸酯(CC),采用红外光谱、X射线衍射、扫描电镜等对产物的结构进行了表征,并对纤维素再生膜的截留性能进行了研究。结果表明,制备纤维素氨基甲酸酯的最佳反应条件为160℃,8 h;酯化前后,纤维素晶型没有发生明显的变化;制备的纤维素再生膜具有孔径很小的微孔,这些微孔能够使H_2O和Na_2SO_4在压力的作用下顺利通过,而对亚甲基蓝有良好的截留效果;因此,纤维素再生膜对含亚甲基蓝的废水具有良好的分离效果。 相似文献