首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Ultrathin Al films with different thicknesses were deposited on glass substrates by DC magnetron sputtering. The effects of film thickness on morphology and optical properties of the films were investigated in detail. When film thickness increases from 7.0 to 84.0 nm, the average grain size and surface roughness enlarges from 27.6 to 94.2 nm and from 0.25 to 1.87 nm, respectively. Below critical thickness of 28.0 nm, which is the thickness that Al films form continuous film, the optical properties vary significantly with thickness increasing and then tend to be stable. In the absorptance spectra, all films exhibit distinct broad peaks which can be attributed to the absorption due to the interband transition. The possible reasons for the shift in the peak position are due to the quantum size effects and internal stress in the ultrathin Al films.  相似文献   

2.
Alumina (Al2O3) thin films were sputter deposited over well-cleaned glass and Si < 100 > substrates by DC reactive magnetron sputtering under various oxygen gas pressures and sputtering powers. The composition of the films was analyzed by X-ray photoelectron spectroscopy and an optimal O/Al atomic ratio of 1.59 was obtained at a reactive gas pressure of 0.03 Pa and sputtering power of 70 W. X-ray diffraction results revealed that the films were amorphous until 550 °C. The surface morphology of the films was studied using scanning electron microscopy and the as-deposited films were found to be smooth. The topography of the as-deposited and annealed films was analyzed by atomic force microscopy and a progressive increase in the rms roughness of the films from 3.2 nm to 4.53 nm was also observed with increase in the annealing temperature. Al-Al2O3-Al thin film capacitors were then fabricated on glass substrates to study the effect of temperature and frequency on the dielectric property of the films. Temperature coefficient of capacitance, AC conductivity and activation energy were determined and the results are discussed.  相似文献   

3.
The coexistence of ultraviolet (UV) photoconductivity (PC) and room-temperature ferromagnetism (RTFM) is observed in polycrystalline ZnO thin films deposited by unbalanced magnetron sputtering under high oxygen pressure. A significant increase in PC (∼ 870% to 40 000%) is observed with increasing film thickness and the consequent structural disorder and film porosity. In contrast, the saturation magnetization (MS) at room temperature is found to decrease from 1.02 emu/g to 0.53 emu/g with increasing film thickness from 50 to 150 nm.  相似文献   

4.
Highly c-axis oriented ZnO thin films were grown on Si (100) substrates with Zn buffer layers. Effects of the Zn buffer layer thickness on the structural and optical qualities of ZnO thin films were investigated for the ZnO films with the buffer layers 90, 110, and 130 nm thick using X-ray diffraction (XRD), photoluminescence (PL) and atomic force microscopy (AFM) analysis techniques. It was confirmed that the quality of a ZnO thin film deposited by RF magnetron sputtering was substantially improved by using a Zn buffer layer. The highest ZnO film quality was obtained with a Zn buffer layer 110 nm thick. The surface roughness of the ZnO thin film increases as the Zn buffer layer thickness increases.  相似文献   

5.
We demonstrate the deposition of fully dense, stoichiometric TiN films on amorphous SiO2 by reactive high power impulse magnetron sputtering (HiPIMS) in the absence of both substrate heating and applied bias. Contrary to the highly underdense layers obtained by reactive dc magnetron sputtering (dcMS) under similar conditions, the film nanostructure exhibits neither intra- nor intergrain porosity, exhibiting a strong 111 preferred orientation with flat surfaces. Competitive grain growth occurs only during the early stages of deposition (< 100 nm). The strong differences in the kinetically-limited nanostructural evolution for HiPIMS vs. dcMS are explained by high real-time deposition rates with long relaxation times, high ionization probabilities for Ti, and broad ion energy distributions.  相似文献   

6.
Crystalline TiO2 thin films, especially layers with predominantly anatase phase, exhibit photocatalytic activities resulting in photoinduced hydrophilic, self-cleaning and antifogging properties. In this paper, a comparison of the photocatalytic properties of layers deposited with two different PVD techniques is given.On one hand, a reactive pulse magnetron sputtering (PMS) system has been used to obtain TiO2 films at dynamic deposition rates from 8 to 50 nm m/min. On the other hand, TiO2 layers were deposited by reactive electron beam evaporation at very high deposition rates between 500 and 1000 nm m/min. An additional spotless arc discharge (Spotless arc Activated Deposition—SAD process) was used for plasma activation to improve layer properties. Photoinduced hydrophilicity was investigated by measuring the decrease of the water contact angle during UV-A irradiation.  相似文献   

7.
Mn-doped zinc oxide (ZnO:Mn) thin films with low resistivity and relatively high transparency were firstly prepared on glass substrate by direct current (DC) magnetron sputtering at room temperature. Influence of film thickness on the properties of ZnO:Mn films was investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that all the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. As the thickness increases from 144 to 479 nm, the crystallite size increases while the electrical resistivity decreases. However, as the thickness increases from 479 to 783 nm, the crystallite size decreases and the electrical resistivity increases. When film thickness is 479 nm, the deposited films have the lowest resistivity of 2.1 × 10− 4 Ω cm and a relatively high transmittance of above 84% in the visible range.  相似文献   

8.
TiO2 films have been deposited on silicon substrates by radio frequency magnetron sputtering of a pure Ti target in Ar/O2 plasma. The TiO2 films deposited at room temperature were annealed for 1 h at different temperatures ranging from 400 °C to 800 °C. The structural, morphological, mechanical properties and the wetting behavior of the as deposited and annealed films were obtained using Raman spectroscopy, atomic force microscopy, transmission electron microscopy, nanoindentation and water contact angle (CA) measurements. The as deposited films were amorphous, and the Raman results showed that anatase phase crystallization was initiated at annealing temperature close to 400 °C. The film annealed at 400 °C showed higher hardness than the film annealed at 600 °C. In addition, the wettability of film surface was enhanced with an increase in annealing temperature from 400 °C to 800 °C, as revealed by a decrease in water CA from 87° to 50°. Moreover, the water CA of the films obtained before and after UV light irradiation revealed that the annealed films remained more hydrophilic than the as deposited film after irradiation.  相似文献   

9.
ZnO thin films with thickness d = 100 nm were deposited by radio frequency magnetron sputtering onto glass substrate from different targets. The structural analyses of the films indicate they are polycrystalline and have a wurtzite (hexagonal) structure. Crystallites are preferentially oriented with (002) plane parallel to the substrate surface and the samples have low values for surface roughness, between 1.7 nm and 2.7 nm. The mechanism of electrical conduction in the studied films is strongly influenced by this polycrystalline structure and we used Van der Pauw method to analyze these properties. Electrical studies indicate that the ZnO thin films are n-type. For the cooling process, thermal activation energy of electrical conduction of the samples can vary from 1.22 eV to 1.07 eV (for the ZnO layer obtained from for metallic Zn target) and from 0.90 eV to 0.63 eV (for the ZnO layer obtained from ZnO target), respectively. The influence of deposition arrangement and oxidation conditions on the structural and electrical properties of the ZnO films was investigated in detail.  相似文献   

10.
Rough TiC/a-C films were intentionally grown on smooth surface to simulate a rough finishing of industrial substrates. Surface roughness and growth dynamics of TiC/a-C nanocomposite films deposited on such rough surfaces by non-reactive pulsed-DC (p-DC) sputtering of graphite targets at 350 kHz pulse frequency were studied using atomic force microscopy, cross-sectional scanning electron microscopy. Intensive concurrent ion impingement during the film growth at higher pulse frequency of p-DC sputtering leads to rapid smoothing of such initial rough surfaces. It was shown that rapid smoothing of initially rough surfaces with RMS roughness ~ 6 nm to < 1 nm can be effectively achieved by 350 kHz p-DC sputtering. These films exhibit dense and glassy microstructure. The surface roughness strongly influences the frictional behavior of TiC/a-C nanocomposite films where the rougher surfaces yielded higher steady state friction coefficient (CoF).The observed dynamic smoothing phenomenon was applied to obtain ultra-smooth and ultra-low friction (μ ~ 0.05) TiC/a-C:H nanocomposite films on industrial polished steel substrates by 200 and 350 kHz p-DC sputtering of Ti-targets in an argon/acetylene atmosphere.  相似文献   

11.
Transparent and conductive Al-doped ZnO (AZO) thin films were deposited on substrates including alkali-free glass, quartz glass, Si, and SiO2 buffer layer on alkali-free glass by using radio frequency magnetron sputtering. The effects of different substrates on the structural, electrical and optical properties of the AZO films were investigated. It was found that the crystal structures were remarkably influenced by the type of the substrates due to their different thermal expansion coefficients, lattice mismatch and flatness. The AZO film (100 nm in thickness) deposited on the quartz glass exhibited the best crystallinity, followed sequentially by those deposited on the Si, the SiO2 buffer layer, and the alkali-free glass. The film deposited on the quartz glass showed the lowest resistivity of 5.14 × 10− 4 Ω cm among all the films, a carrier concentration of 1.97 × 1021 cm− 3 and a Hall mobility of 6.14 cm2/v·s. The average transmittance of this film was above 90% in the visible light spectrum range. Investigation into the thickness-dependence of the AZO films revealed that the crystallinity was improved with increasing thickness and decreasing surface roughness, accompanied with a decrease in the film resistivity.  相似文献   

12.
采用一种新型的离子束辅助非平衡反应磁控溅射设备制备了TiN/AlN纳米多层复合膜。采用XRD衍射、TEM、显微硬度计和干涉显微镜对TiN/AlN纳米多层膜的微结构和力学性能进行了表征。结果表明:TiN/AlN多层膜有良好的周期;调制结构影响薄膜的择优取向,薄膜整体表现出硬度增强的效果,硬度随调制周期的变化而变化并在调制周期为7、5nm时达到最大值。  相似文献   

13.
Indium tin oxide (ITO) films were deposited on glass substrates by rf magnetron sputtering using a ceramic target (In2O3-SnO2, 90-10 wt%) without extra heating. The post annealing was done in air and in vacuum, respectively. The effects of annealing on the structure, surface morphology, optical and electrical properties of the ITO films were studied. The results show that the increase of the annealing temperature improves the crystallinity of the films, increases the surface roughness, and improves the optical and electrical properties. The transmittance of the films in visible region is increased over 90% after the annealing process in air or in vacuum. The resistivity of the films deposited is about 8.125×10−4 Ω cm and falls down to 2.34×10−4 Ω cm as the annealing temperature is increased to 500°C in vacuum. Compared with the results of the ITO films annealed in air, the properties of the films annealed in vacuum is better.  相似文献   

14.
王美涵  温佳星  陈昀  雷浩 《无机材料学报》2018,33(12):1303-1308
采用掠射角反应磁控溅射法在室温下沉积了纳米结构氧化钨(WO3)薄膜, 并对薄膜进行热处理。利用场发射扫描电镜(FE-SEM)和X射线衍射仪(XRD)对氧化钨薄膜的形貌和结构进行了表征。当掠射角度为80°时, 采用直流电源沉积的氧化钨薄膜具有纳米斜柱状结构, 而采用脉冲直流电源沉积的薄膜呈现纳米孔结构。纳米薄膜经450℃热处理3 h后, 纳米斜柱彼此连接, 失去规整结构, 而纳米孔结构的孔尺寸变大。XRD分析表明室温沉积的氧化钨薄膜具有无定形结构, 经450℃热处理1 h后, 转变为单斜晶相。具有纳米斜柱状或纳米孔结构氧化钨薄膜的光学调制幅度在波长600 nm时达到60%, 且电致变色性能可逆。  相似文献   

15.
CuInGa precursor thin films were deposited using a CuGa (75-25 at.%) and an In 3″ diameter target material simultaneously by RF magnetron sputtering. The precursor films were deposited on Si and glass substrates at − 80 °C and room temperature, and characterized by Rutherford backscattering spectroscopy, Auger electron spectroscopy, scanning electron microscopy, atomic force microscopy and X-ray diffraction. The effects of gun power density and substrate temperatures on resulting precursor film properties were investigated. Precursor films deposited at − 80 °C have a smooth morphology with a 75% reduction in all roughness values and are more dense and homogeneous in structure compared to precursors deposited at room temperature. Therefore these precursors will result in better selenization process reproducibility.  相似文献   

16.
The microstructures and compositions of multicomponent Ti–B–N, Ti–Si–B–N, Ti–Si–C–N, and Ti–Al–C–N films deposited by reactive magnetron sputtering using composite targets and produced by self-propagating high-temperature synthesis (SHS) have been investigated by means of transmission electron microscopy. Auger spectroscopy, and X-ray diffraction. Depending on the chemical composition of the film deposited, different single-phase crystalline films were observed. The sputtering process included sputter cleaning prior to the DC magnetron sputter deposition of Ti and TiN interlayers prior to DC magnetron sputter deposition of the multicomponent films from multicomponent targets. The films produced were characterized in terms of their microhardness, wear resistance, high-temperature oxidation conducted in air. and corrosion resistance in a solution of 5NH2SO4 at room temperature.  相似文献   

17.
ZnO:Al thin films varying the thickness from 80 to 110 nm were deposited on polished float zone < 100 > Si wafers by radio frequency magnetron sputtering at 100 °C. To texturize these surfaces with the aim of being used as antireflective coating, a wet etching process based on NH4Cl was applied. Taking into account that the layer thickness was small, the control of the etch parameters such as etchant concentration and etching time was evaluated as a function of the textured film properties. An appropriate control of the etching rate to adjust the final thickness to the 80 nm required for the application was realized. Using NH4Cl concentrations of 10 wt.% and short times of up to 25 s, an increase of the film roughness up to a factor of 5.6 of the as-deposited films was achieved. These optimized textured films showed weighted reflectance values below 15% and considerable better electrical properties than the as-deposited 80 nm-thick ZnO:Al films.  相似文献   

18.
A novel sputtering technique combining the symmetric compressive magnets with cylindrical cathode has been developed to mass produce high-quality oxide and nitride films on plastic sheets. The discharge characteristics of our sputtering can supply about three times larger power efficiencies than that of the conventional magnetron sputtering. Moreover, in continuous dielectric sputtering experiments, the substrate temperature was kept lower than 60 °C. The refractive index of SiNX and SiO2 thin film at 500 nm is 1.86 and 1.46 respectively. Moreover, 4 layered anti-reflection coatings of silicon nitride and oxide films deposited on both sides of the PET sheet is achieved to fabricate, and the reflection less than 1% is realized in the range from 420 to 680 nm.  相似文献   

19.
磁控共溅射制备氮化钛铝薄膜及其机械性能的研究   总被引:2,自引:0,他引:2  
倪晟  孙卓  赵强 《功能材料》2005,36(12):1842-1844,1848
使用磁控共聚焦溅射技术并改变溅射过程中Al的功率来制备了一系列Al含量不同的氮化钛铝(TiAlN)薄膜。在溅射过程,薄膜沉积速率和Al含量随Al的溅射功率增加而增大,而薄膜的粗糙度减小。Al含量较低时(约21%),TiAlN薄膜的硬度和弹性模量都高于TiN薄膜。而Al含量较高时(〉26%),薄膜的硬度和弹性模量也随含量增加减小。  相似文献   

20.
Titanium nitride (TiN) films in the thickness range of 0.013 µm to 0.3 µm were grown by high power impulse magnetron sputtering (HIPIMS) on silicon substrates in two deposition modes: a) the substrate was grounded and b) − 125 V bias was applied to the substrate. On the films we performed microstructure-, film texture- and film stress-analysis. The films deposited under − 125 V bias experienced a more energetic ion bombardment than the films deposited on grounded substrates. This difference in ion bombardment energy is reflected in the different microstructure. In contrast to previous results for TiN films grown by conventional reactive magnetron sputtering, we observe no major film stress gradient for increasing film thicknesses. We explain this observation from the absence of a 200-to-111 texture crossover during film growth.A moderate ion bombardment leads to TiN films with (111) texture, while an intense ion bombardment leads to films with (001) texture (Greene et al.; Appl. Phys. Lett. 67 (20) 2928-2930 (1995)). At the same time (001) oriented grains are much more susceptible to compressive stress generation by ion bombardment than (111) oriented grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号