共查询到18条相似文献,搜索用时 78 毫秒
1.
点密度函数加权模糊C-均值算法的聚类分析 总被引:8,自引:3,他引:8
基于模糊C-均值算法具有对数据集进行等划分趋势的缺陷,文章利用数据点的密度大小作为权值,借助数据本身的分布特性,提出了一种新的加权模糊C-均值算法,该方法不仅在一定程度上克服了模糊C-均值算法的缺陷,而且具有良好的收敛性。 相似文献
2.
对于团状、每类样本数相差较大的数据集,FCM算法和半监督模糊C均值聚类算法都不是最佳聚类方法,因为它们对数据集有等划分趋势。针对这种情况,利用样本点分布密度大小作为权值,结合半监督学习方法,提出半监督点密度加权模糊C均值聚类算法。在半监督学习过程中,对于求极值的问题采用模拟退火算法。结果证明,点密度加权模糊C均值聚类算法确实能提高聚类精度。 相似文献
3.
4.
一种基于用户需求的加权模糊聚类分析算法 总被引:1,自引:0,他引:1
从用户的实际需求出发,分析了聚类系统的使用者可能对系统提出的功能要求,提出了一种基于加权Euclid距离的模糊C聚类分析算法.在该算法中,权值是由用户或领域的专家直接指定的,加在不同特征指标上的权值体现了用户对各个特征指标重视程度的差别.与传统的模糊C聚类分析相比,该算法增加了聚类的灵活性,能够产生令用户更加满意的聚类结果. 相似文献
5.
为解决模糊C-均值(FCM)聚类算法在大数据量中存在的计算量大、运行时间过长的问题,提出了一种改进方法:先用多次随机取样聚类得到的类中心作为FCM算法的初始类中心,以减少FCM算法收敛所需的迭代次数;接着通过数据约减,压缩参与迭代运算的数据集,减少每次迭代过程的运算时间。该方法使FCM算法运算速度大大提高,且不影响算法的聚类效果。 相似文献
6.
模糊C均值主要考虑距离函数,即点与点之间的关系。在样本集中,不同样本点对于聚类的影响不同,加权模糊C均值通过对点本身加权来体现这一点。(加权)模糊C均值对初始中心敏感,且容易陷入局部最优;而遗传算法则是全局最优。所以,将二者的思想结合,利用遗传算法得到初始聚类中心,再用加权模糊C均值进行分类,可以得到更好的聚类效果。 相似文献
7.
8.
为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索性、并行计算性等特点避免聚类陷入局部最优解。实验证明该算法保证了种群的多样性,有较好的全局收敛性,克服了模糊C-均值聚类算法的不足,能有效解决未成熟收敛的问题,使聚类问题最终快速、有效地收敛到全局最优解。 相似文献
9.
新的混合模糊C-均值聚类算法 总被引:1,自引:1,他引:1
基于量子行为的粒子群算法(QPSO)是一种改进的粒子群优化算法.它使用的参数个数少,在解的收敛性和全局搜索能力上优于基本的粒子群算法(PSO).将QPSO算法与模糊C-均值(FCM)算法相结合提出一种新的混合模糊C-均值聚类算法(QPSO-FCM),新算法代替了FCM算法的基于梯度下降的迭代过程,在一定程度上克服了FCM算法易陷入局部极小的缺陷,降低了FCM算法的初值敏感度.实验结果表明,改进后的新算法与FCM算法和PSO与FCM结合算法相比,具有良好的收敛性,聚类效果也有较好的改善. 相似文献
10.
柴油机故障诊断中的遗传与模糊C-均值混合聚类分析算法 总被引:8,自引:0,他引:8
该文探讨了遗传算法与模糊C-均值算法相结合的混合聚类分析算法,给出了在柴油机故障诊断中的应用,效果良好。 相似文献
11.
刘小芳 《计算机工程与应用》2006,42(15):20-22,55
模糊C-均值(FCM)算法是一种非监督的模式识别方法。由于该算法具有对数据集进行等划分的趋势,影响其聚类精度。利用数据点的密度大小作为权值,借助数据本身的分布特性,提出了一种点密度加权模糊C-均值算法。该方法不仅在一定程度上克服了FCM算法的缺陷,而且具有良好的收敛性。当以聚类已知的少量数据点作为监督信息指导聚类,聚类效果进一步改善。并用聚类有效性函数对算法的聚类有效性进行了评价,从而为算法的聚类性能提供了理论依据。 相似文献
12.
图像分割的快速模糊c均值聚类算法 总被引:12,自引:0,他引:12
提出了一种快速有效的图像模糊c-均值(FCM)聚类分割方法。该方法一方面通过特征映射减少数据量,另一方面通过调整算法的计算步骤以减少迭代过程的存储量,从而大大缩短图像分割的运行时间。应用于图像分割的实验结果表明新算法在保持原有FCM分割效果的同时大大缩短了CPU时间。 相似文献
13.
关于模糊C-均值(FCM)聚类算法的改进 总被引:3,自引:0,他引:3
针对模糊C-均值(FCM)聚类算法的容易收敛于局部极值的不足,提出了一种改进的模糊FCM聚类算法,此新算法在聚类中心选取和优化过程中进行了充分的考虑,是一种用于确定最佳聚类数的聚类算法,并且利用了分阶段思想,结合动态直接聚类算法和标准聚类算法,来尽量避免模糊C-均值(FCM)聚类算法的不足。新算法与传统(FCM)聚类算法方法相比,提高了算法的寻优能力,并且迭代次数更少,在准确度上也有较大的提高,具有很好的实际应用价值。 相似文献
14.
在模糊聚类算法中,模糊系数被用来控制簇可能重叠的程度,其负面影响是所有的数据对象会影响所有的簇。为解决该问题,Klawonn和Hppner使用模糊函数替换模糊系数(KH算法),但该方法是针对数值属性数据而设计的。然而,在许多真实的应用中,数据对象通常同时由数值属性和分类属性描述。面向混合属性数据,文中提出了一种新的基于模糊质心的模糊加权聚类算法。首先结合模糊质心和均值来表示混合属性条件下的簇中心,然后使用能够评估不同属性在聚类过程中作用的度量来评估数据对象和簇中心之间的相异度,最后给出算法框架。在3个混合属性数据集上对新算法进行了一系列的测试,实验结果表明新算法的性能优于传统算法。 相似文献
15.
基于K近邻的故障检测(FD-KNN)算法可以有效处理非线性、多模态的故障检测问题,但在过程故障检测中存在故障类型多、测量变量复杂等缺陷。将模糊C均值聚类(FCM)和K近邻(KNN)相结合,提出一种新的故障检测方法FCM-KNN。该方法与传统算法相比较,故障检测率有明显的提升。首先,应用FCM聚类将多模态训练集按模态聚类,同时根据样本与各聚类中心的距离比例来得到样本对于每个聚类中心的隶属度;再根据隶属度来判断样本所属模态,进而在各个模态下完成基于KNN的故障检测。通过多模态仿真实例进一步验证该方法的有效性。该方法具有检测率高、漏报和误报率低等优点,可有效提高检测效果。 相似文献
16.
针对基于改进模糊聚类的数据融合算法存在融合不精确、融合可信度较低等不足,为了解决多个同质传感器在无先验知识的情况下对同一个目标的某一特征进行测量的数据融合问题,提出了一种自适应模糊[C]均值聚类的数据融合算法,主要是把自适应模糊[C]均值聚类应用到数据融合中。该算法首先在改进的模糊聚类中通过引入自适应系数以发现不同形状和大小的聚类子集,使得融合结果更精确;其次将卡尔曼滤波原理和基于多层感知机的神经网络预测法应用到误差协方差估计中,提高了融合可信度。实验结果表明,与7种经典数据融合算法进行对比,该算法在4个模拟数据集与真实数据集上融合结果较好,特别在判别函数与融合误差方面优势更为明显。 相似文献
17.
基于模糊C-均值聚类算法的入侵检测 总被引:2,自引:0,他引:2
聚类分析是一种有效的异常入侵检测方法,可用以在网络数据集中区分正常流量和异常流量.文中采用模糊C-均值聚类算法对网络流量样本集进行划分,从中区分正常流量和异常流量,并针对入侵检测问题的特性提出了新的相似性度量方法.最后,利用KDD99数据集进行实验,证明该算法能够有效地发现异常流量. 相似文献
18.
针对现有环境感知推荐算法存在的不足,提出一种基于模糊C均值聚类的环境感知推荐算法.首先采用模糊C均值聚类算法对历史环境信息进行聚类,产生聚类及隶属矩阵;然后匹配活动用户环境信息与历史环境信息聚类,采用聚类隶属度作为映射系数将符合条件的非隶属数据映射为隶属数据,最终选择与活动环境匹配的隶属用户评分数据为用户产生推荐.同现有算法相比,该算法不仅解决了因用户环境改变不能准确推荐项目的问题,而且通过采用模糊聚类算法克服了传统硬聚类问题,并且借助于隶属映射函数解决了聚类产生的数据稀疏性问题.在MovieLens数据集上比较了新算法和其他算法的性能,验证了所提算法的有效性. 相似文献