首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
This paper proposes a methodology that analyses and classifies the electromyographic (EMG) signals using neural networks to control multifunction prostheses. The control of these prostheses can be made using myoelectric signals taken from surface electrodes. Finger motions discrimination is the key problem in this study. Thus the emphasis, in the proposed work, is put on myoelectric signal processing approaches. The EMG signals classification system was established using the linear neural network. The experimental results show a promising performance in classification of motions based on biosignal patterns.  相似文献   

2.
提出了基于肌电信号(EMG)的无声语音识别系统。由于该系统是通过EMG信号而非声音信号进行识别,因此可应用于高噪声环境和帮助失去发音能力的人实现无声交流,有着良好的应用前景。关于该系统的实现,提出了以下方法:实验时使用0—9十个中文数字,由受试者不发声地重复说出,从三块面部肌肉采集EMG信号;对EMG信号进行小波变换,获取变换系数矩阵后提取其能量值,构造特征矢量送入BP神经网络分类器分类。实验表明,基于小波变换的特征提取方法是一种有效的方法.适用于类似EMC信号的非平稳生理信号。  相似文献   

3.
We developed a new method for estimation of vigilance level by using both EEG and EMG signals recorded during transition from wakefulness to sleep. Previous studies used only EEG signals for estimating the vigilance levels. In this study, it was aimed to estimate vigilance level by using both EEG and EMG signals for increasing the accuracy of the estimation rate. In our work, EEG and EMG signals were obtained from 30 subjects. In data preparation stage, EEG signals were separated to its subbands using wavelet transform for efficient discrimination, and chin EMG was used to verify and eliminate the movement artifacts. The changes in EEG and EMG were diagnosed while transition from wakefulness to sleep by using developed artificial neural network (ANN). Training and testing data sets consist of the subbanded components of EEG and power density of EMG signals were applied to the ANN for training and testing the system which gives three situations for the vigilance level of the subject: awake, drowsy, and sleep. The accuracy of estimation was about 98–99% while the accuracy of the previous study, which uses only EEG, was 95–96%.  相似文献   

4.
One of the major difficulties faced by those who are fitted with prosthetic devices is the great mental effort needed during the first stages of training. When working with myoelectric prosthesis, that effort increases dramatically. In this sense, the authors decided to devise a mechanism to help patients during the learning stages, without actually having to wear the prosthesis. The system is based on a real hardware and software for detecting and processing electromyografic (EMG) signals. The association of autoregressive (AR) models and a neural network is used for EMG pattern discrimination. The outputs of the neural network are then used to control the movements of a virtual prosthesis that mimics what the real limb should be doing. This strategy resulted in rates of success of 100% when discriminating EMG signals collected from the upper arm muscle groups. The results show a very easy-to-use system that can greatly reduce the duration of the training stages.  相似文献   

5.
反馈神经网络在入侵检测系统中的应用   总被引:4,自引:0,他引:4  
刘玉洁  张旭 《计算机工程》2005,31(Z1):174-175
对基于网络的入侵检测系统进行了研究,提出了将反馈网络应用于入侵检测系统中,使用一种改进的Jordan神经网络算法,借助于反馈神经网络提取描述攻击模式的特征和进行规则推导,然后用神经网络建立的规则集进行入侵检测,实验证明利用反馈神经网络提高了入侵检测系统的性能。  相似文献   

6.
肌电信号的采集和分析是外骨骼式康复机器人关节预测控制的重要基础之一.肌电信号数据量大并且复杂,相关性较高,信号处理通用性和高效性低,分析和预测人体运动信息误差大.采用最大自主等长收缩标准化处理算法,大大提高了表面肌电信号的通用性和泛化能力,并基于主成分分析方法,对肌电信号降维处理,利用神经网络实现与下肢的映射分析.实验结果表明,通过对比分析不同的降维处理方式,主成分降维后处理的肌电信号平均相关性达0.93,利用神经网络预测人体正常行走的下肢三关节运动角度,具有良好的可重复性和较高的精度,可以实现人体下肢肌电信号和各关节的映射控制.  相似文献   

7.
手势识别是人机交互领域的重要研究内容, 为截肢患者控制智能假肢手提供基础. 当前主流方法之一是利用表面肌电图(Electromyogram, EMG)识别手部运动意图, 但肌电信号存在信号弱和易受噪声、汗液、疲劳影响等缺点. 同时肌电图在识别准确率方面, 尤其是截肢患者手势识别方面仍然具有较大的提升空间. 针对这些问题, 设计了基于气压肌动图(Pressure-based mechanomyogram, pMMG)的穿戴式信号采集装置, 为手势识别提供了优质的信号源. 结合深度神经网络中全连接层结构、典型抽样和标准正则化技术, 提出了一种改进多类神经模糊推理系统(Improved multicalss neural fuzzy inference system, IMNFIS), 与传统自适应神经模糊推理系统(Adaptive neural fuzzy inference system, ANFIS)相比, 泛化能力得到显著提升. 招募了7名健康受试者和1名截肢受试者, 并用8种算法开展离线实验. 所提方法在残疾人手势识别实验中取得了97.25%的最高平均准确率, 在健康人手势识别实验中取得了98.18%的最高平均准确率. 与近年公开报道的多种手势识别研究相比, 所提方法的综合性能更优.  相似文献   

8.
Estimation of the dynamic spinal forces from kinematics data is very complicated because it involves the handling of the relationship between kinematic variables and electromyography (EMG) signals, as well as the relationship between EMG signals and the forces. A recurrent fuzzy neural network (RFNN) model is proposed to establish the kinematics-EMG-force relationship and model the dynamics of muscular activities. The EMG signals are used as an intermediate output and are fed back to the input layer. Since EMG is a direct reflection of muscular activities, the feedback of this model has a physical meaning. It expresses the dynamics of muscular activities in a straightforward way and takes advantage from the recurrent property. The trained model can then have the forces predicted directly from kinematic variables while bypassing the costly procedure of measuring EMG signals and avoiding the use of a biomechanics model. A learning algorithm is derived for the RFNN model.  相似文献   

9.
The aim of this paper was to propose a recurrent neural network-based predictive controller for robotic manipulators. A neural network controller for a six-joint Stanford robotic manipulator was designed using the generalized predictive control (GPC) and the Elman network. The GPC algorithm, which is a class of digital control method, requires long computational time. This is a disadvantage in real-time robot control; therefore, the Elman network controller was designed to reduce processing time by avoiding the highly mathematical and computational complexity of the GPC. The main reason for choosing the Elman network, amongst several neural network algorithms, was that the presence of feedback loops have a profound impact on the learning capability of the network. The designed neural network controller was able to recover quickly because of its significant generalization capability, which allowed it to adapt very rapidly to changes in inputs. The performance of the controller was also shown graphically using simulation software, including the dynamics and kinematics of the robot model.  相似文献   

10.
It is well known that information processing in the brain depends on neuron systems. Simple neuron systems are neural networks, and their learning methods have been studied. However, we believe that research on large-scale neural network systems is still incomplete. Here, we propose a learning method for millions of neurons as resources for a neuron computer. The method is a type of recurrent path-selection, so the neural network objective must have nesting structures. This method is executed at high speed. When information processing is executed by analogue signals, the accumulation of errors is a grave problem. We equipped a neural network with a digitizer and AD/DA (Analogue Digital) converters constructed of neurons. They retain all information signals and guarantee precision in complex operations. By using these techniques, we generated an image shifter constructed of 8.6 million neurons. We believe that there is the potential to design a neuron computer using this scheme. This work was presented in part at the Fifth International Symposium on Artificial Life and Robotics, Oita, Japan, January 26–28, 2000  相似文献   

11.
This study presents a gait subphase recognition method using an electromyogram (EMG) with a signal graph matching (ESGM) algorithm. Existing pattern recognition and machine learning using EMG signals has several innate problems in gait subphase detection. With respect to time domain features, their feature values may be analogous because two different gait steps may have similar muscle activation. In addition, the current gait subphase might not be recognized until the next gait subphase passes because the window size needed for feature extraction is larger than the period of the gait subphase. The ESGM algorithm is a new approach that compares reference EMG signals and input EMG signals according to time variance to solve these problems and considers variations of physiological muscle activity. We also determined all the elements of the ESGM algorithm using kinematic gait analysis and optimized the algorithm using experiments. Therefore, the ESGM algorithm reflects better timing characteristics of EMG signals than the time domain feature extraction algorithm. In addition, it can provide real-time and user-adaptive recognition of the gait subphase by using only EMG signals. Experimental results show that the average accuracy of the proposed method is 13% better than existing methods and the average detection latency of the proposed method was 5.5 times lower than existing methods.  相似文献   

12.
基于确定学习的机器人任务空间自适应神经网络控制   总被引:3,自引:0,他引:3  
吴玉香  王聪 《自动化学报》2013,39(6):806-815
针对产生回归轨迹的连续非线性动态系统, 确定学习可实现未知闭环系统动态的局部准确逼近. 基于确定学习理论, 本文使用径向基函数(Radial basis function, RBF)神经网络为机器人任务空间跟踪控制设计了一种新的自适应神经网络控制算法, 不仅实现了闭环系统所有信号的最终一致有界, 而且在稳定的控制过程中, 沿着回归跟踪轨迹实现了部分神经网络权值收敛到最优值以及未知闭环系统动态的局部准确逼近. 学过的知识以时不变且空间分布的方式表达、以常值神经网络权值的方式存储, 可以用来改进系统的控制性能, 也可以应用到后续相同或相似的控制任务中, 节约时间和能量. 最后, 用仿真说明了所设计控制算法的正确性和有效性.  相似文献   

13.
This paper presents a neural‐network‐based predictive control (NPC) method for a class of discrete‐time multi‐input multi‐output (MIMO) systems. A discrete‐time mathematical model using a recurrent neural network (RNN) is constructed and a learning algorithm adopting an adaptive learning rate (ALR) approach is employed to identify the unknown parameters in the recurrent neural network model (RNNM). The NPC controller is derived based on a modified predictive performance criterion, and its convergence is guaranteed by adopting an optimal algorithm with an adaptive optimal rate (AOR) approach. The stability analysis of the overall MIMO control system is well proven by the Lyapunov stability theory. A real‐time control algorithm is proposed which has been implemented using a digital signal processor, TMS320C31 from Texas Instruments. Two examples, including the control of a MIMO nonlinear system and the control of a plastic injection molding process, are used to demonstrate the effectiveness of the proposed strategy. Results from both numerical simulations and experiments show that the proposed method is capable of controlling MIMO systems with satisfactory tracking performance under setpoint and load changes. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

14.
Extraction of individual Motor Unit Action Potentials (MUAPs) from a surface ElectroMyoGram (EMG) is an essential but challenging task for clinical study and physiological investigation. This paper presents an automatic decomposition of surface EMGs using a self-organised ART2 neural network. In our approach, MUAP peaks are first detected using a Weighted Low-Pass Differential (WLPD) filter. A modified ART2 network is then utilised to classify MUAPs based on MUAP waveforms and firing time information. Individual MUAP trains are identified from real surface EMG signals recorded during weak contraction, and also from simulated surface EMGs. The firing statistics and the waveforms of individual MUAPs are then extracted. A number of computer tests on 50 simulated and real surface EMGs of limb muscles show that up to five MUAP trains can be effectively extracted, with their waveforms and firing parameters estimated. Being able to decompose real surface EMGs has essentially demonstrated the potential applications of our approach to the non-invasive diagnosis of neuromuscular disorders.    相似文献   

15.
采用遗传算法训练对角递归神经网络预测控制器   总被引:2,自引:0,他引:2  
本文提出了一种基于广义预测控制的神经网络预测控制方案.预测控制器由对角递归 神经网络预测控制器和前向神经网络静态补偿器组成.两种神经网络均采用遗传算法进行训 练.仿真实验表明,对于带纯时延的非线性被控对象,采用遗传算法设计的对角递归神经网 络预测控制器具有令人满意的控制性能.  相似文献   

16.
Constructive Backpropagation for Recurrent Networks   总被引:1,自引:0,他引:1  
Choosing a network size is a difficult problem in neural network modelling. In many recent studies, constructive or destructive methods that add or delete connections, neurons or layers have been studied in order to solve this problem. In this work we consider the constructive approach, which is in many cases a very computationally efficient approach. In particular, we address the construction of recurrent networks by the use of constructive backpropagation. The benefits of the proposed scheme are firstly that fully recurrent networks with an arbitrary number of layers can be constructed efficiently. Secondly, after the network has been constructed we can continue the adaptation of the network weights as well as we can of its structure. This includes both addition and deletion of neurons/layers in a computationally efficient manner. Thus, the investigated method is very flexible compared to many previous methods. In addition, according to our time series prediction experiments, the proposed method is competitive in terms of modelling performance and training time compared to the well-known recurrent cascade-correlation method.  相似文献   

17.
The motor unit action potentials (MUPs) in an electromyographic (EMG) signal provide a significant source of information for the assessment of neuromuscular disorders. Since recently there were different types of developments in computer-aided EMG equipment, different methodologies in the time domain and frequency domain has been followed for quantitative analysis of EMG signals. In this study, the usefulness of the different feature extraction methods for describing MUP morphology is investigated. Besides, soft computing techniques were presented for the classification of intramuscular EMG signals. The proposed method automatically classifies the EMG signals into normal, neurogenic or myopathic. Also, multilayer perceptron neural networks (MLPNN), dynamic fuzzy neural network (DFNN) and adaptive neuro-fuzzy inference system (ANFIS) based classifiers were compared in relation to their accuracy in the classification of EMG signals. Concerning the impacts of features on the EMG signal classification, different results were obtained through analysis of the soft computing techniques. The comparative analysis suggests that the ANFIS modelling is superior to the DFNN and MLPNN in at least three points: slightly higher recognition rate; insensitivity to overtraining; and consistent outputs demonstrating higher reliability.  相似文献   

18.
基于神经网络与多模型的非线性自适应广义预测控制   总被引:9,自引:0,他引:9  
针对一类不确定非线性离散时间动态系统, 提出了基于神经网络与多模型的非线性广义预测自适应控制方法. 该自适应控制方法由线性鲁棒广义预测自适应控制器, 神经网络非线性广义预测自适应控制器和切换机制三部分构成. 线性鲁棒广义预测自适应控制器保证闭环系统的输入输出信号有界, 神经网络非线性广义预测自适应控制器能够改善系统的性能. 切换策略通过对上述两种控制器的切换, 保证系统稳定的同时, 改善系统性能. 给出了所提自适应方法的稳定性和收敛性分析. 最后通过仿真实例验证了所提方法的有效性.  相似文献   

19.
In this paper,the constrained optimization technique for a substantial problem is explored,that is accelerating training the globally recurrent neural network.Unlike most of the previous methods in feedforware neural networks,the authors adopt the constrained optimization technique to improve the gradientbased algorithm of the globally recurrent neural network for the adaptive learning rate during tracining.Using the recurrent network with the improved algorithm,some experiments in two real-world problems,namely,filtering additive noises in acoustic data and classification of temporat signals for speaker identification,have been performed.The experimental results show that the recurrent neural network with the improved learning algorithm yields significantly faster training and achieves the satisfactory performance.  相似文献   

20.
端到端神经网络能够根据特定的任务自动学习从原始数据到特征的变换,解决人工设计的特征与任务不匹配的问题。以往语音识别的端到端网络采用一层时域卷积网络作为特征提取模型,递归神经网络和全连接前馈深度神经网络作为声学模型的方式,在效果和效率两个方面具有一定的局限性。从特征提取模块的效果以及声学模型的训练效率角度,提出多时间频率分辨率卷积网络与带记忆模块的前馈神经网络相结合的端到端语音识别模型。实验结果表明,所提方法语音识别在真实录制数据集上较传统方法字错误率下降10%,训练时间减少80%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号