首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以油酸为偶联剂,将氢氧化钠-油酸处理后的黄麻纤维布作为填充材料制备了不饱和聚酯复合材料,并对氢氧化钠处理黄麻纤维的适宜浓度、复合材料的拉伸强度、冲击强度、吸水率进行了研究测试。结果表明:氢氧化钠的适宜浓度为20%,黄麻纤维增强不饱和聚酯树脂的冲击强度及拉伸强度最大值分别为12.75 kJ/m2和33.05 MPa,复合材料的最大吸水率为4.07%。经油酸处理的黄麻纤维可有效提高不饱和聚酯复合材料的性能。  相似文献   

2.
Jute fibers were treated with 5% NaOH solution for 4 and 8 h, respectively, to study the mechanical and impact fatigue properties of jute‐reinforced vinylester resin matrix composites. Mechanical properties were enhanced in case of fiber composites treated for 4 h, where improved interfacial bonding (as evident from scanning electron microscopy [SEM]) and increased fiber strength properties contributed effectively in load transfer from the matrix to the fiber; but their superior mechanical property was not retained with fatigue, as they showed poor impact fatigue behavior. The fracture surfaces produced under a three‐point bend test and repeated impact loading were examined under SEM to study the nature of failure in the composites. In case of untreated fiber composites, interfacial debonding and extensive fiber pullout were observed, which lowered the mechanical property of the composites but improved their impact fatigue behavior. In composites treated for 4 h under repeated impact loading, interfacial debonding occurred, followed by fiber breakage, producing a sawlike structure at the fracture surface, which lowered the fatigue resistance property of the composites. The composites with fibers treated with alkali for 8 h showed maximum impact fatigue resistance. Here, interfacial debonding was at a minimum, and the fibers, being much stronger and stiffer owing to their increased crystallinity, suffered catastrophic fracture along with some microfibrillar pullout (as evident from the SEM micrographs), absorbing a lot of energy in the process, which increased the fatigue resistance property of the composites. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2588–2593, 2002  相似文献   

3.
The thermal behavior of vinyl ester resin matrix composites reinforced with jute fibers treated for 2, 4, 6, and 8 h with 5% NaOH was studied with Thermo‐gravimetric analysis and differential scanning calorimetry. The moisture desorption peak shifted to a higher temperature, from 37 to 58.3°C, for all the treated‐fiber composites because of improved wetting of the fibers by the resin and stronger bonding at the interface. The degradation temperature of the vinyl ester resin in the composites was lowered to 410.3°C from that of the neat resin, 418.8°C. The X‐ray diffraction studies showed increased crystallinity of the treated fibers, which affected the enthalpy of the α‐cellulose and hemicellulose degradation. The hemicellulose degradation temperature remained the same (299.7°C) in all the treated‐fiber composites, but the enthalpy associated with the hemicellulose degradation showed an increasing trend in the treated composites with a small increase in the weight loss. This could be attributed to the increased hydrogen bonding between the more accessible ? OH groups of the hemicellulose in the noncrystalline region of the jute fiber and the resin. The degradation temperature of α‐cellulose was lowered from 364.2 to 356.8°C in the treated composites. The enthalpy of α‐cellulose degradation showed a decreasing trend with a lowering of the weight loss. The crystalline regions of the fiber, consisting of closely packed α‐cellulose chains, were bonded with the resin mainly on the surface through hydrogen bonds and became more resistant to thermal degradation; this reduced the weight loss. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 123–129, 2004  相似文献   

4.
Cyanoethylation of jute fibers in the form of nonwoven fabric was studied, and these chemically modified fibers were used to make jute–polyester composites. The dynamic mechanical thermal properties of unsaturated polyester resin (cured) and composites of unmodified and chemically modified jute–polyester were studied by using a dynamic mechanical analyzer over a wide temperature range. The data suggest that the storage modulus and thermal transition temperature of the composites increased enormously due to cyanoethylation of fiber. An increase of the storage modulus of composites, prepared from chemically modified fiber, indicates its higher stiffness as compared to a composite prepared from unmodified fiber. It is also observed that incorporation of jute fiber (both unmodified and modified) with the unsaturated resin reduced the tan δ peak height remarkably. Composites prepared from cyanoethylated jute show better creep resistance at comparatively lower temperatures. On the contrary, a reversed phenomenon is observed at higher temperatures (120°C and above). Scanning electron micrographs of tensile fracture surfaces of unmodified and modified jute–polyester composites clearly demonstrate better fiber–matrix bonding in the case of the latter. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1505–1513, 1999  相似文献   

5.
6.
The effect of nanoclay on structural relaxation of unsaturated polyester (UP) resin containing 3 wt% Cloisite 10A (UP/10A), 3 wt% Cloisite 30B (UP/30B), and the neat resin was investigated by differential scanning calorimetry (DSC) and temperature modulated differential scanning calorimetry (TMDSC). X‐ray diffraction and transmission electron microscopy were used to evaluate the morphology of UP/10A and UP/30B nanocomposites. According to the strong‐fragile concept proposed by Angel, the values of the fragility index m were determined. The average size of a cooperative rearranging region (CRR) at the glass transition temperature (Tg) was then calculated. Considering the significant increase in δT (the mean temperature fluctuation) of UP/10A, it was concluded that UP/10A system was more heterogeneous than the neat UP and UP/30B specimen. Significant drop in Tg accompanied by an increase in δT and a decrease in characteristic length of cooperativity at glass transition temperature (ξTg) might be a sign of existence of smaller average CRR sizes in UP/10A nanocomposites. Results showed that the increase in the concentration of styrene between galleries of Cloisite 10A caused a decrease in styrene content outside the nanoclay layers leading to diminishing of crosslink density and as a consequence the decrease of ξTg. POLYM. ENG. SCI., 54:2859–2865, 2014. © 2014 Society of Plastics Engineers  相似文献   

7.
Curing behavior of an unsaturated polyester (UP) resin containing 1 wt% organically modified clay (OMC) catalyzed with methyl ethyl ketone peroxide (MEKP) initiator and promoted by cobalt naphthenate accelerator was investigated by dynamic differential scanning calorimetry (DSC) at five different heating rates of 5, 10, 15, 20, and 25°C/min. X‐ray diffraction and transmission electron microscopy were used to evaluate the morphology of UP/OMC composites. Results showed a mixture of intercalated and exfoliated morphology. The dynamic DSC curing curves showed a bimodal exothermic peak; therefore, two independent reactions, namely, redox and thermal copolymerizations were assumed. Kinetic parameters were calculated by using autocatalytic model and using Down hill simplex method and Runge–Kutta algorithm for each reaction. The addition of nanoclay resulted in decrease of the activation energy of the redox reaction compared to that of the neat UP resin. Also, the pre‐exponential factor of the first reaction for UP/OMC was less than that of the neat UP. Two factors including decreasing the activation energy and decreasing the number ofcollisions of reactionary components finally resulted in increasing the reaction rate of the first reaction out of the whole reaction in the system containing nanoclay compared to the neat UP resin. It is interesting that nanoclay has no effect on the thermal decomposition reaction. POLYM. COMPOS., © 2011 Society of Plastics Engineers.  相似文献   

8.
碳纤维增强树脂基复合材料以其优异的综合性能成为当今世界材料学科研究的重点。本文介绍了的碳纤维增强复合材料的性能,简述了增强机理、成型工艺及其应用领域和发展趋势。  相似文献   

9.
10.
11.
玻璃纤维布/苎麻纤维布混杂增强不饱和聚酯树脂的研究   总被引:2,自引:1,他引:2  
雷文  任超  杨涛 《热固性树脂》2007,22(6):25-28
采用玻璃纤维布与苎麻纤维布混杂增强不饱和聚酯(UP)树脂制备复合材料,研究玻纤布与苎麻布的相对比例及偶联剂处理对复合材料力学性能的影响,研究了不同复合材料的吸水性并与玻璃纤维复合材料和苎麻纤维复合材料二者进行了比较。结果表明,混杂纤维增强复合材料的拉伸强度、拉伸模量随混杂纤维中苎麻布含量的增加而下降,弯曲强度及弯曲模量在混杂纤维中苎麻布与玻纤布的比例为10∶20和15∶15时分别达到最大值188.09 MPa和1.56 GPa;所有偶联剂处理均可明显改善复合材料的拉伸模量及弯曲模量,硅烷类偶联剂的效果更佳,NDZ401可使复合材料的拉伸强度得到最大幅度(37.66%)的提高,而KH570及NDZ401对改善弯曲强度效果最佳;复合材料吸水后,厚度变化率大于宽度变化率,温度升高,复合材料吸水后尺寸变化率及吸水率均增大,混杂纤维复合材料的吸水率与玻纤布复合材料的吸水率相近,远低于苎麻布复合材料的吸水率。  相似文献   

12.
Impregnation rate of thermoplastic resin (polypropylene) in jute fiber mat and influence of relative factors on impregnation were studied, aiming to develop the continuous melt impregnation technique and to investigate the effect of impregnation rate and temperature on processing conditions and mechanical properties of natural fiber mat-reinforced thermoplastics. Influence of pressure on porosity of fiber mat and effect of melt viscosity on impregnation rate were also investigated. The modified capillary rheometer was used as apparatus and experimental data were analyzed based on the one-dimension Darcy’s law. Results showed that at a given pressure, the impregnation rate is inversely proportional to melt viscosity and jute fiber mat has higher porosity than glass fiber mat. The architecture, compressibility, permeability and fiber diameter of jute fiber mat were compared with those of glass fiber mat and their effects on impregnation were discussed further. It could be seen that the average diameter of jute fiber is much bigger; the porosity of jute fiber mat is significantly higher and inner bundle impregnation does not exist in jute fiber mat. Therefore, it is not difficult to understand why the impregnation rate in jute fiber mat is 3.5 times higher and permeability is 14 times greater. Kozeny constants of jute and glass fiber mats calculated based on the capillary model are 2950 and 442, respectively. __________ Translated from Journal of Chemical Engineering of Chinese Universities, 2007, 21(4): 586–591 [译自: 高校化学工程学报]  相似文献   

13.
Impregnation rate of thermoplastic resin (polypropylene) in jute fiber mat and influence of relative factors on impregnation were studied, aiming to develop the continuous melt impregnation technique and to investigate the effect of impregnation rate and temperature on processing conditions and mechanical properties of natural fiber mat-reinforced thermoplastics. Influence of pressure on porosity of fiber mat and effect of melt viscosity on impregnation rate were also investigated. The modified capillary rheometer was used as apparatus and experimental data were analyzed based on the one-dimension Darcy’s law. Results showed that at a given pressure, the impregnation rate is inversely proportional to melt viscosity and jute fiber mat has higher porosity than glass fiber mat. The architecture, compressibility, permeability and fiber diameter of jute fiber mat were compared with those of glass fiber mat and their effects on impregnation were discussed further. It could be seen that the average diameter of jute fiber is much bigger; the porosity of jute fiber mat is significantly higher and inner bundle impregnation does not exist in jute fiber mat. Therefore, it is not difficult to understand why the impregnation rate in jute fiber mat is 3.5 times higher and permeability is 14 times greater. Kozeny constants of jute and glass fiber mats calculated based on the capillary model are 2950 and 442, respectively.  相似文献   

14.
The regularities of intermolecular and chemical interactions of aramid fibers and the epoxide matrix have been studied. The strength of the composite interface has been shown to be determined by the fiber–matrix joint.  相似文献   

15.
This article deals with the study of a highly durable polyester polymer concrete reinforced with glass fiber polymer rebars. It describes the specific properties of the concrete, which were tested using different experimental techniques such as porosimetry, scanning electron microscopy, and petrography. Likewise, characterization on a macroscale was carried out to define the mechanical properties of the material (modulus of elasticity, stress–strain curve, ultimate strength, and bond). Having defined these properties, the article then presents a relatively simple calculation method to estimate the ultimate bearing capacity of beams under bending load, which is then verified by testing both beams and full-scale elements. Bearing in mind the viscoelastic nature of the polymer, several considerations are advanced on the identification of safety factors connected with permanent load (deferred deformations) and live load. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

16.
The dynamic mechanical properties of sisal fiber reinforced polyester composites fabricated by resin transfer molding (RTM) were investigated as a function of fiber content, frequency, and temperature. Investigation proved that at all temperature range the storage modulus (E′) value is maximum for the composites having fiber loading of 40 vol%. The loss modulus (E″) and damping peaks (tan δ) were lowered with increasing fiber content. The height of the damping peaks depends upon the fiber content and the fiber/matrix adhesion. The extent of the reinforcement was estimated from the experimental storage modulus, and it has been found that the effect of reinforcement is maximum at 40 vol% fiber content. As the fiber content increases the Tg from tan δ curve showed a positive shift. The loss modulus, storage modulus, and damping peaks were evaluated as a function of frequency. The activation energy for the glass transition increases upon the fiber content. Cole–Cole analysis was made to understand the phase behavior of the fiber reinforced composites. Finally, attempts were made to correlate the experimental dynamic properties with theoretical predictions. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

17.
介绍了碳纤维增强树脂基复合材料的性能特点,结合碳纤维增强树脂基复合材料的优异性能,讨论了其在新能源(风力发电、钻井采油和天然气储存)、汽车(外覆盖件、刹车片和涡轮增压)和航空航天(民用飞机、战略导弹)领域的最新应用。最后对碳纤维增强树脂基复合材料未来的发展方向进行了展望。  相似文献   

18.
Large diameter pipes and structures are manufactured with jute reinforced polyester resin. A modified filament winding machine is used to take the jute cloth on the rotating mold acting as a collapsible mandrel. The effect of calendering, fillers and poly(vinyl acetate) on jute reinforcing cloth and the results on the ultimate mechanical properties of the composite are studied. The effect of load during the curing of polyester and its effect on the strength of structure is reported. These findings are used in manufacturing of large diameter structures with improved mechanical properties.  相似文献   

19.
20.
气干型不饱和聚酯树脂   总被引:1,自引:0,他引:1  
论述了以烯丙基 (缩水 )甘油醚改善不饱和聚酯树脂的气干性 ,确定了气干性单体的最佳用量及树脂的稳定性酸值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号