首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to make the traditional product structure tree representation amenable to concurrent engineering relationships likeperspective-of anddependent-on have to be added to the essentialpart-of relationship. Complex data can be held in proprietary formats, while simple data will be in a common representation for direct access by diverse disciplines. Coordination among team members in a project can be carried out using such a model. Besides, a virtually unified view of all the data is possible, though they may lie in distributed and heterogeneous data bases. A very necessary characteristic of such a model is that its time evolution should be easy to represent in order to reflect the dynamic nature of product development, where the model itself, and not merely the data values change. Managing versions is also facilitated by the comprehensive structure of the Unified Product Data Model (UPDM).  相似文献   

2.
Constraint networks are a major approach to knowledge representation in Concurrent Engineering (CE) systems. The networks model various factors in CE as constraints linked by shared variables. Many systems have been developed to assist constraint network processing. While these systems can be useful, the assumption that a solution must simultaneously satisfy all the constraints is often unrealistic and hard to achieve. Proposed in this paper is a Prioritized Constraint Network. A mechanism to propagate priorities is developed, and a new satisfrability definition taking into account the priorities is described. Strength of constraint supporters can be derived from propagated priorities. Several properties useful for investigating PCN's and finding effective solving strategies are developed.  相似文献   

3.
Manufacturing cost modelling for concurrent product development   总被引:1,自引:0,他引:1  
This research work aims to develop an intelligent knowledge-based system that accomplishes an environment to assist inexperienced users to estimate the manufacturing cost modelling of a product at the conceptual design stage of the product life cycle. Therefore, a quicker response to customers’ expectations is generated. This paper discusses the development process of the proposed system for cost modelling of machining processes. It embodies a CAD solid modelling system, user interface, material selection, process/machine selection, and cost estimation techniques. The main function of the system, besides estimating the product cost, is to generate initial process planning includes generation and selection of machining processes, their sequence and their machining parameters. Therefore, the developed system differs from conventional product cost estimating systems, in that it is structured to support concurrent engineering. Manufacturing knowledge is represented by hybrid knowledge representation techniques, such as production rules, frames and object oriented. To handle the uncertainty in cost estimation model that cannot be addressed by traditional analytical methods, a fuzzy logic-based knowledge representation is implemented in the developed system. Based on the analysis of product life cycle, the estimated cost included material, processing, machine set-up and non-productive costs. A case study is discussed and demonstrated to validate the proposed system.  相似文献   

4.
  总被引:1,自引:0,他引:1  
This research work aims to develop an intelligent constraint-based system that enables designers to consider at the early stages of the design process all activities associated with product’s life cycle. One of the most important aspects of these activities is the evaluation and optimisation of manufacturing processes that require various type of information from the different aspects of product’s life cycle. This research article discusses the development of a prototype system for manufacturing process optimisation using a combination of both mathematical methods and constraint-programming techniques. This approach enables designers to evaluate and optimise feasible manufacturing processes in a consistent manner as early as possible during the design process. This helps in avoiding unexpected design iterations that wastage a great amount of time and effort, leading to longer lead-time. The development process has passed through the five major stages: Firstly, an intelligent constraint-based design system for concurrent product and process design has been developed. Secondly, a manufacturing process optimisation module has been constructed. Thirdly, the product features, processes, cost, time and constraints to be used for carrying out various design tasks has been represented in the format of constraints, frames, objects, and rules. Fourthly, the process optimisation and evaluation rules for the selection of feasible processes for complex features, and finally, the information management system that ensures consistency in information exchange and decision making activities have been developed.  相似文献   

5.
Timed Concurrent Constraint Programming for Analysing Biological Systems   总被引:1,自引:0,他引:1  
In this paper we present our first approach to model and verify biological systems using ntcc, a concurrent constraint process calculus. We argue that the partial information constructs in ntcc can provide a suitable language for such systems. We also illustrate how ntcc may provide a unified framework for the analysis of biological systems, as they can be described, simulated and verified using the elements provided by the calculus.  相似文献   

6.
A decision support system for product design in concurrent engineering   总被引:4,自引:1,他引:4  
Compared with the traditional sequential design method, concurrent engineering is a systematic approach to integrate concurrent design of products and their related processes. One of the key factors to successfully implement concurrent engineering is information technology. In order to design a product and its manufacturing process simultaneously, information on product features, manufacturing requirements, and customer demands must be processed while the design is concurrently going on. There is an increased understanding of the importance of the correct decisions being made at the conceptual design and development stages that involve many complex evaluation and decision-making tasks. In order to promote the efficiency in concurrent product development, appropriate evaluation and decision tools need to be provided. In this paper, the characteristics of fuzzy, multi-stage evaluation and decision making in concurrent product development process are analyzed and a decision support system for product design in concurrent engineering is presented. An example is given to illustrate the application of the system.  相似文献   

7.
This paper proposes an approach to handling imprecision in design and concurrent engineering systems by using interval analysis and constraint networks. By allowing design parameters to be specified with intervals rather than exact points, this approach permits designers to iteratively transform vague conceptual designs into detailed final designs. When a designer changes a variable's interval or assigns a value, the results are propagated through constraints and the resulting feasible interval for all other dependent variables is pruned. The interval constraint network approach described in this paper extends previous work by allowing the representation of and reasoning about complex constraints involving conditions, conjunctions and disjunctions, as well as both symbolic and numeric variables. Many concurrent engineering constraints cannot be modeled without this sort of representational flexibility. A prototype of this approach has been implemented in a system called SPARK-IP. The operation of SPARK-IP is demonstrated through a concurrent engineering design problem involving printed wiring boards.  相似文献   

8.
With widely used concurrent and collaborative engineering technologies, the validity and consistency of product information become important. In order to establish the state of the art, this paper reviews emerging concurrent and collaborative engineering approaches and emphasizes on the integration of different application systems across product life cycle management (PLM) stages. It is revealed that checking product information validity is difficult for the current computer-aided systems because engineering intent is at best partially represented in product models. It is also not easy to maintain the consistency among related product models because information associations are not established. The purpose of this review is to identify and analyze research issues with respect to information integration and sharing for future concurrent and collaborative engineering. A new paradigm of research from the angle of feature unification and association for product modeling and manufacturing is subsequently proposed.  相似文献   

9.
Re-engineering of the design process for concurrent engineering   总被引:20,自引:0,他引:20  
According to the requirements of concurrent engineering, three interdependency relationships (uncoupled relationship, coupled relationship and decoupled relationship) between design activities are presented in this paper. And the coupled relationship plays an important role in concurrent product design process. To represent the precedence relationships among design activities, a directed graph is used to describe the design process. And the interdependency relationship between activities is illustrated by a Design Structure Matrix which is the transpose of the accessibility matrix of the corresponding graph. Using the DSM, an algorithm of recognizing the coupled activities during the design process is presented. Moreover, an algorithm to figure out the order levels of activities during the design process is proposed. And both algorithms are illustrated with a die design example.  相似文献   

10.
A concurrent engineering-oriented design database representation model (CE-DDRM) is introduced in this research for supporting various life-cycle aspects in concurrent design. In this model, concepts and behaviors of different design database modeling components, including entities, properties, relationships, tasks, and specifications, are defined at meta-class level. Design database is modeled at two different levels, class level and instance level, representing generic design libraries and special design cases, respectively. A Web-based system architecture is proposed to model distributed design database and allow team-members for different product development life-cycle aspects at different locations to access the design database. This newly introduced approach provides the foundation for developing the next generation CAD systems with concurrent engineering functions.  相似文献   

11.
Concurrent Engineering demands a new way of working and many organisations experience difficulty during implementation. The research described in this paper has the aim to develop a paper-based workbook style methodology that companies can use to increase the benefits generated by Concurrent Engineering, while reducing implementation costs, risk and time.

The three-stage methodology provides guidance based on knowledge accumulated from implementation experience and best practitioners. It encourages companies to learn to manage their Concurrent Engineering implementation by taking actions which expose them to new and valuable experiences. This helps to continuously improve understanding of how to maximise the benefits from Concurrent Engineering.

The methodology is particularly designed to cater for organisational and contextual uniqueness, as Concurrent Engineering implementations will vary from company to company. Using key actions which improve the Concurrent Engineering implementation process, individual companies can develop their own ‘best practice’ for product development. The methodology ensures that key implementation issues, which are primarily human and organisational, are addressed using simple but proven techniques.

This paper describes the key issues that the majority of companies face when implementing Concurrent Engineering. The structure of the methodology is described to show how the issues are addressed and resolved. The key actions used to improve the Concurrent Engineering implementation process are explained and their inclusion in the implementation methodology described.

Relevance to industry

Implementation of Concurrent Engineering concepts in manufacturing industry has not been a straightforward process. This paper describes a workbook-style tool that manufacturing companies can use to accelerate and improve their Concurrent Engineering implementation.  相似文献   


12.
X. F. Zha  H. Du 《Computer aided design》2002,34(14):1087-1110
Product data exchange and interfacing between different CAD/CAM systems are of great importance to the development of concurrent integrated design environments and computer integrated manufacturing systems. This paper presents a STEP-based method and system for concurrent integrated design and assembly planning. An integrated object model for mechanical systems and assemblies is first defined by a hierarchy of structure, geometry and feature. The structure is represented as a component-connector or joint multi-level graph with both hierarchical functional and assembly relations. These hierarchical relation models are then used for uniformly describing their causal relations both for assembly level and feature based single part level. The generic product assembly model is organized according to STEP, using mostly the entities of integrated resources and partly self-defined entities, which are necessary for design and assembly planning. Based on the generic product assembly model, STEP-based strategies and agent concepts are used for agent-based concurrent integration of design and assembly planning. A prototype system, consisting of a CAD system, a product modeling system, an assembly planning system, and an assembly evaluation system is developed, in which product data can be exchanged between these subsystems. Details about the implementation of the system are addressed. The integrated design and assembly planning system can support the introduction of a new product. The results of assembly planning are feedback to the stage of assembly design to improve on the design. A case study is carried out for assembly-oriented design of a gearbox, to illustrate the proposed approach and to validate the developed system.  相似文献   

13.
Product information modeling is critical to the integration of mechanical CAD/CAM systems and to the implementation of a concurrent engineering system. This paper presents a recent development of a feature-based and object-oriented concurrent engineering system with its focus on a product information modeling technique implemented in the system. The technique was developed to capture product definition data including form features and their spatial relationships and to store them as an object-oriented information model during the design process. The paper also describes the implementation of the information modeling technique and its application to manufacturing process planning in an object-oriented environment.  相似文献   

14.
Case studies of worldwide winners: Ford Motor Company's Team Ranger and mid-sized, US$10 million, engineer-to-order Airolite Company, ventilator louver manufacturer, authenticate benefits of applying concurrent Engineering to design processes. They confront and need to surmount: global competition, increased labor costs, rising customer expectations, shorter product life cycles and government regulation. This paper clearly illustrates how Concurrent Engineering in meeting these demands embraces supporting subsystems that include Computer Aided Drafting & Design, Quality Function Deployment and Design for Manufacture & Assembly.  相似文献   

15.
This research focuses on the development of a quantitative intelligent system for implementing concurrent engineering design. The paper first discusses the task of concurrent engineering design and the basic requirements for conducting integrated concurrent engineering design. The proposed quantitative intelligent system approach combines qualitative reasoning, based upon design and manufacturing knowledge, and quantitative evaluation and optimization, conducted using design information and manufacturing data generated in the knowledge-based reasoning. The method allows considerations on non-operating principle aspects of a product to be incorporated into the design phase, such as manufacturing, maintenance, service, recycle, etc., with an emphasis on production costs. The proposed method serves as a convenient software tool for gathering information required in the concurrent engineering design process and integrates tasks from different parts of the product development life cycle, particularly function design, manufacturability analysis and production cost estimation. A prototype software system is developed based upon this method using Smalltalk-80. In the prototype system, concurrent engineering design is carried out by: (1) describing and representing design requirements; (2) generating feasible design candidates and evaluating their design functions; (3) representing design geometry; (4) finding the associated production processes and predicting the production costs of each feasible design; and (5) identifying the costeffective design that satisfies given design requirements and requires minimum production costs.  相似文献   

16.
This paper proposes a tandem architecture for cooperating heterogeneous expert systems. Two levels of meta and working expert systems are involved. The working-level expert systems (W-ES), which may be implemented in their own computational environments and in private proof languages, are mainly for application computations. The meta-level expert systems (M-ES), using a common argument language, are mainly responsible for cooperation. The prototype AGENTS system is described for constructing M-ES. Interaction among W-ES has been transformed into two forms: communication between M-ES through ordinary AGENTS messages and communication between M-ES and the corresponding W-ES using the Deductive Inference Language (DIL). DIL predicates are provided for defining DIL: messages, actuators and converters for interpreting DIL queries and instantiating variables. By this approach, stand-alone capability of infividual systems is retained at the working-level and cooperation is achieved effectively with minimum embellishment at the meta-level.  相似文献   

17.
《Ergonomics》2012,55(4):614-637
A theoretical interdisciplinary model that gives consideration to the critical human and organizational variables for success in concurrent engineering has been developed and validated based on the data derived from 103 electronic component manufacturing companies in the USA. The aim of the model is to determine the impact of organizational ergonomics on work effectiveness in concurrent engineering. A set of questionnaires was developed and data were collected from the manager of the concurrent engineering effort, the team leader and design, manufacturing and marketing team members. The study supports the proposed model and shows that a reward structure that reflects the team effort and quality of communication are significantly related to concurrent engineering performance. This implies that companies using team work structures should find ways to facilitate effective communication among team members and have a reward structure that is balanced to recognize the success of the team.  相似文献   

18.
主要研究并行工程环境下复杂产品虚拟样机协同设计与仿真的体系结构及其关键技术。提出虚拟样机协同设计与仿真系统的体系结构与整体解决方案,研究面向虚拟样机的数字化多领域集成建模理论与方法,建立面向虚拟样机开发全生命周期的集成过程管理与冲突协调模型,提出面向复杂产品虚拟样机开发的多学科协同设计、协同仿真和智能决策支持的理论与方法,建立复杂产品虚拟样机协同支持环境,有效提高企业创新能力和核心竞争力。  相似文献   

19.
A framework for assessing research and practice in requirements engineering is proposed. The framework is used to survey state of the art research contributions and practice. The framework considers a task activity view of requirements, and elaborates different views of requirements engineering (RE) depending on the starting point of a system development. Another perspective is to analyse RE from different conceptions of products and their properties. RE research is examined within this framework and then placed in the context of how it extends current system development methods and systems analysis techniques.  相似文献   

20.
基于虚拟样机的复杂产品协同设计与仿真关键技术研究   总被引:2,自引:0,他引:2  
主要研究并行工程环境下复杂产品虚拟样机协同设计与仿真的体系结构及其关键技术。提出虚拟样机协同设计与仿真系统的体系结构与整体解决方案,研究面向虚拟样机的数字化多领域集成建模理论与方法,建立面向虚拟样机开发全生命周期的集成过程管理与冲突协调模型,提出面向复杂产品虚拟样机开发的多学科协同设计、协同仿真和智能决策支持的理论与方法,建立复杂产品虚拟样机协同支持环境,有效提高企业创新能力和核心竞争力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号