首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The redistribution of spin-labeled phospholipid analogs across the plasma membrane of HepG2 cells, either in suspension or grown as monolayers, was investigated. After incorporation into the outer membrane leaflet spin-labeled aminophospholipids phosphatidylserine (PS) and phosphatidylethanolamine (PE) moved rapidly to the inner monolayer, whereas the analog of phosphatidylcholine (PC) disappeared more slowly from the outer leaflet. The fast, inward movement of the aminophospholipids was abolished after adenosine triphosphate (ATP)-depletion of cells, suggesting the presence of an aminophospholipid translocase in the plasma membrane of these cells. Compared with human red blood cells, the activity of the aminophospholipid translocase is two orders of magnitude higher in HepG2 cells. From these data, a transverse phospholipid asymmetry can be inferred with the aminophospholipids mainly concentrated on the inner monolayer and the choline-containing phospholipids on the outer leaflet. The relevance of the enrichment of PC in the outer membrane leaflet for the formation and composition of the bile is discussed.  相似文献   

2.
The phospholipid translocation from the outer to the inner leaflet of synaptic vesicles isolated from the electric organ of the Japanese electric ray, Narke japonica, was measured using fluorescent phospholipid probes. Phosphatidylcholine (PC), phosphatidylethanolamine (PE), or phosphatidylserine (PS) with a fluorescent NBD-labeled short acyl chain at the sn-2 position was mixed with purified synaptic vesicles and the probe in the outer leaflet of the membranes was reduced with dithionite to quench the fluorescence from time to time. The percentage of fluorescence remaining after the dithionite treatment served as an index for the phospholipid translocation. The results obtained indicated that about 30, 13, and 9% of NBD-PE, NBD-PS, and NBD-PC, respectively, were translocated from the outer to the inner leaflet in 3 h. Thus, the translocation activity in synaptic vesicle membranes was much higher for PE than for PS, in contrast to the previous results obtained with plasma membranes, including synaptosomal membranes. The percentages of the phospholipid in the inner leaflet at equilibrium were estimated to be 41, 31, and 14% for PE, PS, and PC, respectively. The translocation was inhibited by pretreatment with an SH reagent, iodoacetamide, indicating the involvement of a proteinaceous translocator. These data may provide a biochemical basis for elucidating the mechanisms of membrane fusion and exocytosis at nerve endings.  相似文献   

3.
Activation of human platelets by complement proteins, C5b-9, thrombin plus collagen, or a Ca2+ ionophore results in surface exposure of phosphatidylserine (PS), accompanied by the expression of membrane catalytic activity for the tenase (VIIaIXa) and prothrombinase (VaXa) coagulation enzyme complexes. The mechanism underlying this surface exposure of PS upon platelet activation remains unresolved. Using fluorescent derivatives of PS (NBD-PS), we have investigated how the transmembrane migration of PS is related to microvesiculation of the platelet plasma membrane and to fusion of storage granules with the plasma membrane. Gel-filtered platelets were incubated with NBD-PS, allowing 90 +/- 10% of the incorporated NBD-PS to accumulate into the inner leaflet of the plasma membrane. Migration of NBD-PS from the inner leaflet to the plasma membrane surface was monitored by time-based flow cytometry, and correlated with the appearance of platelet microparticles and alpha-granule secretion. Platelet activation by C5b-9 or the Ca2+ ionophore, A23187, increased surface exposure of NBD-PS, due to acceleration of the apparent rate of migration from inner to outer plasma membrane leaflets. The onset of this accelerated migration of NBD-PS to the surface coincided with the onset of plasma membrane vesiculation, and the NBD-PS that partitioned into the membrane of the shed microparticle was also rapidly exposed to the surface (t1/2 < 2 min). In addition to a temporal correlation, microparticle formation and the surface exposure of inner leaflet NBD-PS showed a similar requirement for Ca2+. These results demonstrate that agonist-induced microvesiculation of the platelet plasma membrane is accompanied by accelerated migration of a PS analogue from the inner leaflet to the surface of the shed microparticle membrane, suggesting the mechanism by which induction of platelet microparticle formation exposes catalytic surface for tenase and prothrombinase assembly.  相似文献   

4.
The outward movement (flop) of fluorescently labeled analogues of phosphatidylserine (PS) and phosphatidylcholine (PC) in human and murine red blood cells (RBC) was examined. 1-Oleoyl-2-[6(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]caproyl (C6-NBD) analogues of PS and PC were incorporated in the inner leaflet of the plasma membrane through the action of aminophospholipid translocase or through equilibration upon prolonged incubation, respectively. After removal of noninternalized probe, externalization of C6-NBD-PS or C6-NBD-PC from the inner to outer leaflet was monitored by continuous incubation of the cells in the presence of bovine serum albumin. Flop rates for both probes in intact human RBC were virtually identical (t1/2 approximately 1.5 h), confirming earlier findings by Bitbol et al. [Bitbol, M., et al. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 6783-6787] and Connor et al. [Connor, J., et al. (1992) J. Biol. Chem. 267, 19412-19417]. Flop activity in resealed RBC ghosts could only be found upon coinclusion of both ATP and oxidized glutathione (GSSG). Furthermore, flop in intact cells was sensitive to verapamil (IC50 = 5-7 microM), vincristine (IC50 = 20 microM), and indomethacin (IC50 = 50 microM), suggesting the involvement of proteins conferring multidrug resistance (MDR). Experiments with RBC from knock-out mice for multidrug resistance P-glycoproteins (Mdr1a/1b-/- and Mdr2-/-) and multidrug resistance protein 1 (Mrp1-/-) revealed that Mrp1 is responsible for the observed flop of the fluorescent lipid analogues. We found no indications for outward transport of endogenous PS by any of these drug-transporting proteins as measured by a sensitive prothrombinase assay. Neither aminophospholipid translocase nor Ca2+-induced lipid scramblase activities were affected in RBC of these knock-out mice. We conclude that lipid floppase activity, as detected with lipid probes, reflects the activity of MRP1 recognizing the modified lipid analogues as xenobiotics to be expelled from the cell.  相似文献   

5.
This review deals with current concepts on the regulation and function of phospholipid asymmetry in biological membranes. This ubiquitous phenomenon is characterized by a distinctly different lipid composition between the inner and outer leaflet of the membrane bilayer. Transbilayer asymmetry is controlled by different membrane proteins that function as lipid transporters, catalyzing uni- or bi-directional transbilayer movement of lipids. Under normal conditions, an ATP-dependent protein (aminophospholipid translocase) generates and maintains phospholipid asymmetry by promoting unidirectional transport of aminophospholipids from the outer- to the inner leaflet. The membrane lipid asymmetry may be compromised during cellular activation by a Ca2+-dependent transporter (lipid scramblase) that facilitates rapid bi-directional movement of all major phospholipid classes. A major consequence of this collapse of lipid asymmetry is the exposure of phosphatidylserine (PS) at the outer membrane surface. Surface exposure of PS has important physiological and pathological implications for blood coagulation, apoptosis, and cell-cell recognition.  相似文献   

6.
Oxidant-induced damage has been proposed to be the underlying mechanism for loss of membrane phospholipid asymmetry in the erythrocyte membrane. In sickle cell disease, thalassemia, and diabetes as well as in senescent erythrocytes, an apparent correlation between oxidative damage and loss of phosphatidylserine asymmetry has been reported. In the present study, erythrocytes were subjected to various levels of oxidative stress and/or sulfhydryl modifying agents. The transmembrane location of phosphatidylserine (PS) was assessed by FITC-conjugated annexin V labeling and the PS-dependent prothrombinase assay. Transbilayer movement of spin-labeled PS was used to determine aminophospholipid translocase activity. Our data show that cells did not expose PS as the result of oxidative stress induced by phenylhydrazine, hydrogen peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, or sulfhydryl modification by N-ethylmaleimide (NEM) and diamide, even under conditions that led to severe cellular damage and impairment of aminophospholipid translocase activity. In contrast, the increase of intracellular calcium induced by treatment with calcium and ionophore A23187 leads to a rapid scrambling of the lipid bilayer and the exposure of PS, which can be exacerbated by the inhibition of aminophospholipid translocase activity. Oxidation of the cells with hydrogen peroxide or phenylhydrazine did not affect A23187-induced uptake of calcium, but partly inhibited calcium-induced membrane scrambling. In conclusion, oxidative damage of erythrocytes does not induce exposure of phosphatidylserine on the membrane surface, but can interfere with both aminophospholipid translocase activity and calcium-induced randomization of membrane phospholipids.  相似文献   

7.
The effects of oxidative damage on membrane phospholipid organization were examined in human erythrocytes. Exposure to H2O2 induced shape changes in these cells; normal discocytes became echinocytic, and stomatocytes generated by foreign phosphatidylserine incorporation reverted to discoid morphology. H2O2 treatment also inhibited phosphatidylserine transport from the outer to inner membrane monolayer, consistent with earlier reports on oxidative sensitivity of the aminophospholipid translocator. The morphological changes are consistent with movement of inner monolayer lipids to the outer monolayer, as might be expected if aminophospholipid sequestration is compromised. However, lipid extraction and prothrombinase activation assays showed no increased exposure of phosphatidylserine on the cell surface. Instead, phosphatidylserine was found associated with the cytosolic fraction of H2O2-treated cells. These observations suggest that oxidative damage alters the lipid organization of erythrocyte membranes, not by randomizing the lipid classes within the bilayer, but by inducing extraction of inner monolayer components into the cytosol.  相似文献   

8.
The translocation of spin-labeled analogues of phosphatidylcholine (4-doxylpentanoyl-PC, SL-PC), phosphatidylethanolamine (SL-PE), phosphatidylserine (SL-PS), and sphingomyelin (SL-SM) from the outer to the inner leaflet of the plasma membrane bilayer was investigated in dog kidney MDCK II and human colon Caco-2 cells. Disappearance from the outer leaflet was assayed using back-exchange to serum albumin. Experiments with cells in suspension as well as with polarized cells on filters were performed at reduced temperatures (10 and 20 degreesC) to suppress endocytosis and hydrolysis of spin-labeled lipids. For both epithelial cell lines, a fast ATP-dependent inward movement of the aminophospholipids SL-PS and SL-PE was found, while SL-SM was only slowly internalized without any effect of ATP depletion. The kinetics of redistribution of SL-PC were clearly different between the two cell lines. In MDCK II cells, SL-PC was rapidly internalized in an ATP-dependent and N-ethylmaleimide-sensitive manner and at a rate similar to that of the aminophospholipids. In contrast, in Caco-2 cells the inward movement of SL-PC was much slower than that of the aminophospholipids, did not depend on ATP, and was not N-ethylmaleimide-sensitive. Inhibitor studies indicated that the outward-translocating multidrug resistance P-glycoprotein present in these cells did not affect the kinetics of inward translocation. Internalization was always similar on the apical and basolateral cell surface, suggesting the presence of the same phospholipid translocator(s) on both surface domains of epithelial cells. We propose that Caco-2 cells contain the well-known aminophospholipid translocase, while MDCK II cells contain either two translocases, namely, the aminophospholipid translocase and a phosphatidylcholine-specific translocase, or one translocase of a new type, translocating aminophospholipids as well as phosphatidylcholine.  相似文献   

9.
The two leaflets of the plasma membrane of eukaryotic cells differ in lipid composition: the outer leaflet comprises mainly neutral choline containing phospholipids, whereas the aminophospholipids reside almost exclusively in the cytoplasmic leaflet. The importance of transmembrane lipid asymmetry may be judged from the fact that the cell invests energy to maintain this situation for which at least two regulatory mechanisms are held responsible. A translocase, selective for aminophospholipids, acts as an ATP-dependent pump for rapid inward movement of phosphatidylserine (PS) and phosphatidylethanolamine; in addition, a non-selective, but also ATP-dependent pump causes outward movement of phospholipids, be it at a much lower rate compared to the inward transport by the aminophospholipid translocase. These two systems, acting in concert, are thought to be the main players in the maintenance of a dynamic equilibrium of the phospholipids over both membrane leaflets. Dissipation of membrane lipid asymmetry can be elicited in different cell types under a variety of conditions; in particular, platelets upon activation rapidly lose their normal plasma membrane lipid distribution, but also in other blood cells, lipid asymmetry can be lost, be it at a much lower rate and extent than in platelets. A putative protein, referred to as "scramblase' has been described, which requires the continuous presence of elevated intracellular Ca(2+)-levels, to allow a rapid, non-selective and bidirectional transbilayer movement of phospholipids. Although scrambling of lipids does not require ATP as such, preliminary studies suggest the possible involvement of one or more phosphorylated proteins. The most prominent consequence of the loss of phospholipid asymmetry is exposure of PS in the outer leaflet of the plasma membrane. Surface-exposed PS serves several important physiological functions: it promotes assembly of enzyme complexes of the coagulation cascade, it forms a signal for cell-cell recognition, which is important for cell scavenging processes. Surface-exposure of PS is an early phenomenon of apoptosis and appears to be involved in efficient removal of these cells. In addition, PS in the outer leaflet of cells is thought to play a role in cell fusion processes. It may be clear from the foregoing, that the amount of PS present at the cell surface needs to be tightly controlled, and that an impairment of this process leads to either excessive- or diminished exposition of PS which may have several pathophysiological consequences.  相似文献   

10.
An important role in the formation of hemostasis defects in uremic patients is attributed to platelet dysfunction. An essential role in platelet structure and function is played by membrane phospholipids (PL). They are asymmetrically distributed within the platelet membrane: outer surface is composed mainly of sphingomyelin (Sph) and phosphatidylcholine (PC). During platelet activation a translocation of phosphatidylserine (PS) and phosphatidylethanolamine (PE) from inner to outer membrane surface is observed. Phosphatidylinositol (PI) is not translocated. Lipid abnormalities are common in uremic patients. According to some authors erythropoietin (EPO) has been reported to alter lipid metabolism. In our recent works a positive influence of EPO on platelet PL composition in uremic patients has been indicated. The aim of this study was the assessment of the EPO influence (applied 4000 U per week) on platelet membrane PL distribution in chronically hemodialyzed patients. The PL distribution was determined using nonpenetrating tracer (TNBS) by Vale method, and using high purified phospholipases hydrolysis according to Chap method. Our results indicate that during EPO therapy the PS, PE, Sph and PC exposition at the outer surface of platelet membrane (in patients hemodialyzed without EPO widely disturbed compared with healthy controls) approaches to normal values. These results confirm our recent observations that EPO profoundly interferes with lipid metabolism. The smaller PS exposition at the outer platelet surface during EPO treatment suggests less platelet activation, and might partially explains the positive EPO influence on platelet hemostasis.  相似文献   

11.
The activation of factor XI by meizothrombin was investigated using recombinant meizothrombin (R155A meizothrombin) that is resistant to autocatalytic removal of fragment 1. Meizothrombin was capable of activating factor XI at an activation rate similar to that of thrombin. Dextran sulphate and heparin, known cofactors of thrombin-mediated factor XI activation, did not stimulate the activation of factor XI by meizothrombin. However, the activation of factor XI by meizothrombin was markedly enhanced by vesicles containing phosphatidylcholine (PC), phosphatidylserine (PS) and phosphatidylethanolamine (PE), whereas PC/PS or PC/PE vesicles only had a minor effect on the activation. Thrombin-mediated factor XI activation was not influenced by phospholipids. The effect of PC/PS/PE and PC/PS vesicles was studied in a factor XI dependent clot lysis assay. In this assay, factor XI inhibits clot lysis by a feedback loop in the intrinsic pathway via thrombin-mediated factor XI activation. Removal of endogenous phospholipids in plasma by centrifugation resulted in an increased clot lysis, which could be restored to the pre-centrifugation level by the addition of PC/PS/PE vesicles, but not by PC/PS vesicles. When clot lysis was initiated by factor IXa in the presence of a factor XIa blocking antibody, there was no difference in inhibitory effect of PC/PS/PE or PC/PS vesicles. These data suggested that the differences in clot lysis inhibition observed between PC/PS/PE and PC/PS vesicles were caused by factor XI activation by meizothrombin. Meizothrombin-mediated factor XI activation may therefore play an important role in the antifibrinolytic feedback loop in the intrinsic pathway.  相似文献   

12.
Trophoblast invasion into the uterine wall is controlled by many factors. Previously, a human chorionic gonadotropin (hCG) receptor has been found to be expressed on invasive trophoblast as well as on choriocarcinoma cells implying a possible role for the hormone in trophoblast invasion. Therefore, this study examined the role of hCG in the invasion of trophoblastic (JEG-3) cells. Increasing hCG concentrations were applied in a trophoblast invasion model, JEG-3, through matrigel-coated filters. The proliferation was quantified by WST-1 cleavage assay. Cell migration was studied by examining the number of cells that had passed the uncoated porous (8-microm pore size) filters. After staining, filters were examined microscopically for cells on the underside of the membrane. A quantitative protease assay was also performed. Flow cytometric analysis of alpha5 and alpha6 integrin subunits, which are essential for interactions between cells and extracellular matrix, was performed. hCG increased significantly (P<0.01) the in vitro invasion of trophoblastic JEG-3 cells in a dose-dependent manner. Migration was also increased by hCG (P<0.01). However, cell proliferation remained unchanged. The second messenger analogue dibutyryl cAMP (db cAMP) and the cAMP elevating factor (forskolin) mimicked the effects of hCG by stimulating a dose-dependent increase of trophoblastic cell UEG-3) invasion. The collagenolytic activity of trophoblastic cells (EG-3) was increased by hCG stimulation. No changes were shown in the expression of alpha5 and alpha6 integrin subunits on JEG-3 cells. In vitro hCG is a regulatory factor of invasion and migration in trophoblastic JEG-3 cells, whereas proliferation is not influenced. The endogenous production of hCG by the trophoblast in vivo implies an autocrine control of invasion processes by hCG.  相似文献   

13.
Acyl chain perdeuterated dimyristoylphosphatidylcholine (DMPC-d54) and dimyristoylphosphatidylserine (DMPS-d54) were incorporated by incubation into human erythrocytes. Light microscopic analysis demonstrated that erythrocytes incubated with DMPC-d54 became echinocytic while those incubated with DMPS-d54 became stomatocytic. This indicates that DMPC-d54 was incorporated preferentially into the outer monolayer whereas DMPS-d54 was selectively incorporated into the inner monolayer. Fourier transform infrared (FTIR) spectroscopy was used to monitor the conformational order of the incorporated phospholipids. The asymmetric CD2 stretching frequency of the inserted perdeuterated acyl chains was measured in both isolated membranes and intact erythrocytes as a function of temperature. DMPC-d54 incorporated into erythrocytes exhibited a cooperative phase transition at approximately 19 degrees C, i.e., at the same temperature as pure vesicles. In contrast, DMPS-d54 incorporated into red cells exhibited no phase transition, but possessed conformational order similar to that of the liquid-crystalline state. These results suggest that DMPC-d54 persists in domains in the outer monolayer while DMPS-d54 is dispersed in the inner monolayer. These experiments are the first to demonstrate that FTIR spectroscopy can be utilized to monitor directly a specific species of lipid molecule from the entire phospholipid population.  相似文献   

14.
BACKGROUND: Fluorinated anesthetics can profoundly alter plasma membrane structure and function, potentially impacting cell injury responses. Because major surgery often precipitates acute renal failure, this study assessed whether the most commonly used fluorinated anesthetic, isoflurane, alters tubular cell responses to toxic and hypoxic attack. METHODS: Mouse proximal tubule segments were incubated under control conditions or with a clinically relevant isoflurane dose. Cell viability (lactate dehydrogenase release), deacylation (fatty acid, such as C20:4 levels), and adenosine triphosphate (ATP) concentrations were assessed under one or more of the following conditions: (a) exogenous phospholipase A2 (PLA2) or C20:4 addition, (b) Ca2+ overload (A23187 ionophore), (c) increased metabolic work (Na ionophore), and (d) hypoxia- or antimycin A-induced attack. Isoflurane's effect on NBD phosphatidylserine uptake (an index of plasma membrane aminophospholipid translocase activity) was also assessed. RESULTS: Isoflurane alone caused trivial deacylation and no lactate dehydrogenase release. However, it strikingly sensitized to both PLA2- and A23187-induced deacylation and cell death. Isoflurane also exacerbated C20:4's direct membrane lytic effect. Under conditions of mild ATP depletion (Na ionophore-induced increased ATP consumption; PLA2-induced mitochondrial suppression), isoflurane provoked moderate/severe ATP reductions and cell death. Conversely, under conditions of maximal ATP depletion (hypoxia, antimycin), isoflurane conferred a modest cytoprotective effect. Isoflurane blocked aminophospholipid translocase activity, which normally maintains plasma membrane lipid asymmetry (that is, preventing its "flip flop"). CONCLUSIONS: Isoflurane profoundly and differentially affects tubular cell responses to toxic and hypoxic attack. Direct drug-induced alterations in lipid trafficking/plasma membrane orientation and in cell energy production are likely involved. Although the in vivo relevance of these findings remains unknown, they have potential implications for intraoperative renal tubular cell structure/function and how cells may respond to superimposed attack.  相似文献   

15.
The uptake of adriamycin (ADM) and several derivatives into large unilamellar vesicles (LUV) displaying a transmembrane potential and having a lipid composition close to that of the inner mitochondrial membrane has been measured. Drug association to neutral liposomes, made of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (70:30, w/w) was shown to be potential-dependent: in the absence of potential, accumulation of drug was almost undetectable, whereas between 11 and 50 nmol of drug/mumol phospholipid, depending on the anthracycline used, was associated to LUV exhibiting a membrane potential after 1 h incubation. Association of drugs to LUV with a lipid composition closer to that of the inner mitochondrial (cardiolipin, CL, 20%; PC 50%; PE, 30%, w/w) and displaying a membrane potential is higher than with neutral vesicles (between 40 and 76 nmol of anthracycline/mumol phospholipid after 1 h incubation). Since it is known that ADM and derivatives have a high affinity for CL, a fraction of the associated drug may bind to CL on the outer side of the vesicles. This was confirmed by the fact that, in the absence of potential, between 40 and 56 nmol of anthracycline/mumol phospholipid was still associated to LUV containing CL. In order to discriminate between drug adsorbed at the surface of the LUV and drug accumulated inside the LUV, an anthracycline fluorescence quencher (I-) was used. It was shown on neutral LUV displaying a membrane potential, that between 55 and 81% of the associated drug is actually entrapped inside the vesicles, inaccessible to the quencher. These percentages decreased to between 41 and 68%, respectively, in the presence of LUV containing CL and exhibiting a membrane potential, whereas for LUV of the same composition but displaying no membrane potential almost all the associated drug is adsorbed on the outer face of the LUV, accessible to the quencher, and likely bound to CL. This study brings evidence that antitumour anthracyclines despite important structural homologies do not accumulate to the same extent into vesicles mimicking the lipid composition and the membrane potential of mitoplasts. This ability to reach the matrix compartment of mitochondria could partly explain the differences of cardiotoxicities associated to anthracyclines with closely related molecular structure.  相似文献   

16.
The majority of cases of early-onset familial Alzheimer disease are caused by mutations in the recently identified presenilin 1 (PS 1) gene, located on chromosome 14. PS1, a 467 amino acid protein, is predicted to be an integral membrane protein containing seven putative transmembrane domains and a large hydrophilic loop between the sixth and seventh membrane-spanning domain. We produced 7 monoclonal antibodies that react with 3 non-overlapping epitopes on the N-terminal hydrophilic tail of PS1. The monoclonal antibodies can detect the full size PS1 at M(r) 47,000 (47K) and a more abundant M(r) 28,000 (28K) product in membrane from human brain and human cell lines. We examined the sub-cellular localization by using these antibodies. Immuno-electronmicroscopic and biochemical analysis indicated that PS1 is localized on cellular membrane (plasma, endoplasmic reticulum, and perinuclear) in COS-7 cells overexpressing PS1. Interestingly, the PS1 immunoreactivity in the plasma membrane was concentrated in the regions with cell-cell contact. This observation suggests a possible role of PS1 on the cell membrane as a cell adhesion molecule. To determine the protease cleaving the full length PS1 to two fragments, we treated cells with various protease inhibitors. Only proteasome inhibitor affected the PS1 processing, indicating that proteasome is a candidate protease for PS1 proteolytic cleavage. PC12 cells transiently transfected with PS1 constructs containing different Alzheimer mutations fail to generate the 28K degradation product in contrast to PC12 cells transfected with wild type PS1. Our results indicate that missense mutations in this form of familial Alzheimer disease may act via a mechanism of impaired proteolytic processing of PS1.  相似文献   

17.
In many apoptotic cells, phosphatidylserine (PS), that is normally restricted to the inner membrane layer, is externalized and subsequently recognized by phagocytes. However, it has been unclear whether PS externalization is sufficient for phagocytosis induction. In a cultured cell line undergoing Fas-mediated apoptosis, PS externalization preceded other apoptotic events. When transbilayer movement of membrane phospholipids was analyzed, a decrease of the uptake of PS and phosphatidylethanolamine and an increase of phosphatidylcholine incorporation were observed upon apoptosis induction. Apoptotic cultured cells were phagocytosed by macrophages in a manner dependent on externalized PS before plasma membrane permeability increased. Moreover, a N-ethylmaleimide treatment caused PS externalization independent of apoptosis, and such cells underwent PS-mediated phagocytosis. These results suggested that PS is externalized as a result of membrane phospholipid redistribution and externalized PS by itself induces apoptosing cell phagocytosis.  相似文献   

18.
Membrane phospholipids are important regulators of cellular function. The phospholipid activities, such as lipid composition and transportation, contribute to cellular homeostasis in the lifespan of cells. Alterations in phospholipids result in the movement of bilayer lipids and the initiation of coagulation, recognition and internalization. Hexadecylphosphocholine (HePC) exerts antitumor potencies and represents a new class of antitumor agents targeted to the cellular membrane. Human myeloid leukemia cell lines HL-60 and K562 employed in this study were inhibited by HePC in vitro. The results indicate that the HL-60 cell line was sensitive, while K562 was resistant to HePC. Synthetic HePC is an alkyllysophospholipid analog which interacted with the cell membrane, thereby altering lipid composition and metabolism of membrane phospholipids and modulating intracellular calcium in human myeloid leukemia HL-60 and K562 cell lines. The contents of membrane phospholipids, including phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylserine (PS) and phosphatidylethanolamine (PE), were determined quantitatively with high performance liquid chromatography. The sensitivity of myeloid leukemia HL-60 and K562 cell lines to HePC probably depends on the different distribution of these four phospholipids in the cellular membrane, or on the response of these phospholipids to HePC. The cytosolic free calcium ([Ca++]i) concentration increased by HePC confirmed that [Ca++]i was released from the intracellular calcium pool and is associated with cell differentiation and apoptosis. We investigated the hypothesis that the antiproliferative effect of HePC was mediated through the interference with cellular membrane phospholipids, including choline-containing phospholipids (PC), aminophospholipids (PE and PS) and PI, in eukaryotic cells.  相似文献   

19.
Previous studies of patients with spinocerebellar atrophy type 1 (SCA-1) and Friedreich's ataxia (FA) have suggested the occurrence of membrane disturbances in both disorders. We measured concentrations of phosphatidylcholine (PC), diacyl and plasmalogen phosphatidylethanolamine (PE), and phosphatidylserine (PS), along with their fatty acid profiles, in the brains of eight patients with Friedreich's ataxia (FA) and nine patients with dominantly inherited spinocerebellar atrophy type 1 (SCA-1). Compared with the controls, levels of all phospholipid types (PE, PS, and PC) were reduced in the cerebellar but not occipital cortex of SCA-1 patients. In contrast, in the FA group, levels of PS and PE, but not PC, were reduced in both cerebellar and occipital cortices. The fatty acid composition of individual brain phospholipids was altered in both FA and SCA-1 patients, most markedly in the plasmalogen PE and PS classes of cerebellar phospholipids. Given the neuropathologic characteristics of each disorder, it is likely that altered fatty acid composition and phospholipid levels in SCA-1 cerebellar cortex occur as a consequence of pronounced cerebellar degeneration. In contrast, reduced phospholipid levels in FA cerebellar and occipital cortex, areas characterized by, at most, minimal neuronal loss in FA, may represent a widespread alteration in cellular phospholipid metabolism occurring in response to the specific gene defect in the disorder.  相似文献   

20.
The expression of the tumor suppressor/oncoprotein p53 has been investigated in normal human placental villous trophoblast, in vitro propagated invasive extravillous trophoblast, SV40 tumor antigen (Tag)-immortalized extravillous trophoblast, human cytomegalovirus (hCMV)-infected syncytiotrophoblast and malignant trophoblast (choriocarcinoma) cell lines (JAR, JEG-3 and BeWo) using quantitative enzyme-linked immunosorbent assay (ELISA) and Western immunoblot methods using monoclonal antibodies specific for wild-type and mutant p53. The normal villous and extravillous trophoblast cells expressed low levels of the wild-type p53 protein, whereas normal terminally differentiated multinucleated syncytiotrophoblast cells, as well as hCMV-infected syncytiotrophoblast, showed a higher expression of the wild-type p53 protein. SV40 Tag-immortalized invasive trophoblast cells also showed a high expression of the wild-type p53 protein which remained complexed with the Tag protein. All the choriocarcinoma cell lines over expressed the mutant form of the p53 protein. The increased expression of p53 protein in the SV40 Tag-immortalized invasive trophoblast and choriocarcinoma cells paralleled with increased expression of the mouse double minute 2 (mdm2) oncogenic protein. Transforming growth factor (TGF)-beta inhibited proliferation of normal extravillous trophoblast cells. The antiproliferative effects of TGF-beta were reduced in SV40 Tag-immortalized cells and non-detectable in choriocarcinoma cell lines JAR, BeWo and JEG-3. The inactivation of p53 owing to complexing with Tag in the immortalized premalignant trophoblast and p53 mutation in the malignant trophoblast may be responsible for their aberrant proliferation and refractoriness to antiproliferative effects of TGF-beta observed in these cells as compared to the normal trophoblast. These results may suggest the role of p53 protein in trophoblast differentiation, transformation and tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号