首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
黄清民  魏晓伟  周玉辉 《铸造》2005,54(11):1079-1081
试验研究了铸态LA141合金在温度为30~85℃和压力为37.3~74.6MPa的范围内的压蠕变行为.结果表明,随温度和应力的升高,合金的压蠕变量增大,稳态蠕变速率的对数分别与应力对数和温度呈较好的线性关系,稳态蠕变速率符合半经验公式.在不同的温度下,应力指数n相近,平均值为3.16;不同的应力下,表观激活能Qa相差不大,平均值为104.1 kJ/mol,材料结构常数A为2.68×105,稳态蠕变速率由Li的点阵自扩散和位错的攀移过程所控制.  相似文献   

2.
采用自制的实验装置研究了铸态Mg-4Al-1RE-1Ca-0.2Sr(AECJ411002)合金在温度为125~175 ℃和压力为88~112 MPa范围内的压蠕变行为.结果表明,随温度和应力升高,合金的压蠕变量增大,稳态蠕变速率的对数分别与应力的对数和温度的倒数呈较好的线性关系,稳态蠕变速率符合半经验公式.在不同的温度下,应力指数n相近,平均值为6.19;不同的应力下,表观激活能Qa相差不大,平均值为39.05 kJ/mol,材料的结构常数A为4.18×10-14,稳态蠕变速率由位错攀移控制.AECJ411002合金中沿着晶界分布的Al2Ca相和Al4Sr相具有很高的热稳定性,能提高合金的抗蠕变性能.  相似文献   

3.
肖红星  龙冲生  陈乐  梁波 《金属学报》2013,(8):1012-1016
研究了铸态Ag-In Cd合金在300—400℃及12—24 MPa压应力范围内的压缩蠕变行为,根据实验结果计算了表观应力指数n和表观激活能Q_a,探讨了合金的压缩蠕变机制.结果表明,随温度和应力的升高,合金的稳态蠕变速率增加,稳态蠕变速率与应力之间呈指数关系.温度为300,350和400℃时,合金的n分别为2.90,4.09和5.77;压应力为12,18和24 MPa时,合金的Q_a值分别为68.1,103.7和131.6 kJ/mol.位错运动形成大量层错是Ag-In-Cd合金在温度为300—400℃,压应力为12—24 MPa下的压缩蠕变控制机制.  相似文献   

4.
铸态ZA27合金的压蠕变行为   总被引:2,自引:1,他引:2  
采用自制的实验装置研究了铸态ZA27合金在常温及高温时的压蠕变行为。在温度为20~160℃和压应力为50~137.5MPa的范围内,随温度和应力的升高,合金的压蠕变量增大,稳态蠕变速率的对数分别与应力和温度的对数曲线有较好的线性关系,稳态蠕变速率符合半经验公式。在不同的温度下,应力指数n相近,平均值为3.87;不同的应力下,表观激活能Qa相差不大,平均值为83.73kJ/mol,材料结构常数A为0.002,稳态蠕变速率由锌的点阵扩散和位错的攀移所控制。  相似文献   

5.
采用自制实验装置研究了铸态Mg-4Al-IRE-1.2Ca合金在125~175℃、88~112MPa范围内的压蠕变行为.结果表明:随温度和应力升高,合金的压蠕变量增大.稳态蠕变速率符合半经验公式.在不同的温度下,应力指数n相近,平均值为6.24;在不同的应力下,表观激活能Qa相差不大,平均值为37.51 kJ/mol,材料的结构常数为2.88x10-13,稳态蠕变速率由位错攀移控制.合金中沿晶界分布的Al2Ca相具有很高的热稳定性,能提高合金的抗蠕变性能.  相似文献   

6.
研究了Ti-600合金在550~650℃下的高温蠕变行为,实验应力为150~300 MPa.计算了合金在不同应力、不同温度下的稳态蠕变速率、应力指数及蠕变激活能,并在此基础上研究了其蠕变强化机制.蠕变应力为300 MPa时,Ti-600合金的蠕变激活能Q=490.1 kJ/mol;650 ℃,合金的蠕变应力指数n值在6.5~8.5之间变化,表明在实验温度范围内合金的蠕变变形以位错攀移为主,以位错的滑移为辅.  相似文献   

7.
采用自制的蠕变装置研究Sn-0.7Cu合金钎料在温度为60~120 ℃,压力为30~50 MPa下的压入蠕变性能,并利用SEM和XRD对合金蠕变前后组织的变化进行分析.结果表明,随温度和应力的增加,合金的蠕变速率增大,稳态蠕变速率符合半经验公式,并得出了该合金的本构方程.通过对其蠕变后应力指数、蠕变激活能及显微组织变化的分析,压入蠕变变形机制主要由位错攀移引起.  相似文献   

8.
研究了经α+β两相区固溶+时效处理的Ti-600合金3种温度(550、600、650℃)、3种应力(250、300、350 MPa)下的蠕变性能,通过合金的稳态蠕变速率数值求解了合金的蠕变激活能和蠕变应力指数n,并引入临界应力σ0获得合金的真实应力指数p,最后对合金的蠕变机制进行了分析。结果表明,蠕变温度升高、蠕变应力增加时,Ti-600合金的稳态蠕变速率增大,稳态蠕变时间缩短。Ti-600合金的名义蠕变激活能为473.5 k J/mol。600和650℃下,合金的临界应力σ0值分别为103.1和42.1 MPa;应力指数n分别为6.5和4.9;真实应力指数p值分别为4.23和4.22。同时构建了该合金600和650℃下的稳态蠕变速率本构方程。本实验条件下合金的蠕变均为位错攀移机制。  相似文献   

9.
Sn-9Zn无铅钎料合金的压蠕变行为研究   总被引:1,自引:0,他引:1  
曾明  吕娜  魏晓伟  沈保罗 《铸造技术》2007,28(11):1506-1509
试验研究了Sn-9Zn合金钎料在温度为40~100℃和压力为9.3~18.6MPa范围内的压蠕变行为。结果表明:随温度和应力的升高,合金的压蠕变量增大,稳态蠕变速率的对数分别与应力对数和温度呈较好的线性关系,稳态蠕变速率符合半经验公式。在不同的温度下,应力指数n相近,平均值为5.74;不同的应力下,表观激活能Qa相差不大,平均值为51.95kJ/mol,材料结构常数为0.03,压蠕变变形是位错滑移和位错攀移共同作用的结果,控制稳态蠕变速率的主要因素为位错管道扩散过程控制下的位错攀移。  相似文献   

10.
Mg-Y-LPC合金的压蠕变行为   总被引:1,自引:0,他引:1  
采用自制的试验装置研究了Mg- Y- LPC合金在铸态条件下的压蠕变行为。结果表明,在试验温度为180℃到280℃和压应力为183MPa到231.6MPa的范围内,合金的压蠕变量随着温度和应力的升高而增大。合金的稳态蠕变速率符合Dorn方程εs=Aσnexp(- Qa/RT)。合金的应力指数n为2.49,表观激活能Qa为88.42kJ/mol。合金的压蠕变速率由镁的点阵自扩散和位错攀移所控制,同时,晶界滑移起了重要作用。  相似文献   

11.
稳定化处理对ZA27合金压蠕变的影响   总被引:2,自引:0,他引:2  
采用自制的试验装置研究了稳定化处理对ZA2 7合金在常温及高温时的压蠕变行为的影响。研究表明 ,在试验温度为2 0℃到 16 0℃和压应力为 5 0MPa到 137 5MPa的范围内 ,合金在稳定化处理及铸态下的压蠕变量均随着温度和应力的升高而增大 ,稳定化处理状态下的压蠕变速率大于铸态下的蠕变速率。稳定化处理后 ,合金在压蠕变过程中的负蠕变量及出现负蠕变的温度和应力范围减小。两种状态下的稳态蠕变速率均符合于半经验公式ε·s=Aσnexp(-Qa/RT)。但在不同的温度稳定化处理后 ,合金的应力指数n和表观激活能Qa 均低于铸态时的应力指数和表观激活能 ,而合金的材料结构常数 (A =0 0 7)高于铸态时的材料结构常数 (A =0 0 0 2 )。在两种状态下 ,合金的稳态蠕变速率均是由锌的点阵自扩散和位错的攀移所控制  相似文献   

12.
锰对ZA27合金压蠕变行为的影响   总被引:1,自引:0,他引:1  
采用自制的实验装置研究了锰对 ZA2 7合金在常温及高温时的压蠕变行为的影响。研究表明 ,在所试验的温度为 2 0℃到 16 0℃和压应力为 5 0 MPa到 137.5 MPa的范围内 ,加入锰的合金 ZA2 7- Mn和未加锰的 ZA2 7合金的压蠕变量均随着温度和应力的升高而增大 ,ZA2 7- Mn合金的压蠕变速率小于 ZA2 7合金的压蠕变速率。加入锰后 ,合金在压蠕变过程中的负蠕变量及出现负蠕变的温度和应力范围增大。两种合金的稳态蠕变速率均符合于半经验公式 εs=Aσnexp(- Qa/RT)。但在不同的温度 ,ZA2 7- Mn合金的应力指数 n和表观激活能 Qa 均大于 ZA2 7合金的应力指数和表观激活能 ,而 ZA2 7- Mn合金的材料结构常数 A为 1.5 4× 10 - 4,低于 ZA2 7合金的材料结构常数 A(0 .0 0 2 )。两种合金的稳态蠕变速率均是由锌的点阵自扩散和位错的攀移所控制。  相似文献   

13.
GH4049镍基高温合金的高温蠕变行为   总被引:2,自引:0,他引:2  
研究了镍基变形高温合金GH4049,在实际工作温度范围700~900℃,应力137~600 MPa下的高温拉伸蠕变行为,得到了蠕变后的高温应变恢复曲线.提出了应用参数优化估计的方法,在较大温度及应力范围内,计算稳态蠕变率的宏观唯象公式中的各参数,并用ZA27和GH4049合金的实验数据验证了该方法的可行性.GH4049合金各温度下的稳态蠕变速率与所施加的应力,在双对数坐标系下呈线性关系,应力指数平均值为7.685 1,平均稳态蠕变激活能为543.6 kJ/mol.  相似文献   

14.
采用自制的压蠕变试验装置研究了锆对ZA2 7合金压蠕变行为的影响。结果表明 ,在试验温度 2 0℃~ 1 60℃和压应力 50MPa~ 1 37 5MPa范围内 ,ZA2 7 Zr和ZA2 7合金压蠕变第一阶段的变形量和稳态蠕变速率随着温度和应力的增高而增大 ,但在 1 0 0℃以下时 ,ZA2 7 Zr合金第一阶段的蠕变量及稳态蠕变速率低于ZA2 7合金 ,合金的压蠕变抗力高于ZA2 7合金 ,在 1 60℃则相反。合金的压蠕变行为可用等式 :lnt=C -nlnσ +Q RT表达 ,其中 ,材料结构常数C不同导致两种合金的蠕变行为不同。ZA2 7 Zr合金的应力指数n和蠕变激活能Q分别为 3 63和 87 32kJ·mol-1 ,ZA2 7合金的应力指数和蠕变激活能分别为 3 46和 81 0 9kJ·mol-1 。表明Zr的加入并不影响ZA2 7合金的蠕变机制 ,均由锌的点阵自扩散和位错的攀移控制  相似文献   

15.
研究了挤压态Mg-8Gd-1Er-0.5Zr合金在不同温度(150~200℃)和应力(50~70MPa)条件下100h的蠕变行为。利用OM、TEM等手段观察了蠕变过程中的组织演变规律,并对蠕变机理进行了分析。结果表明,在本实验条件下,合金表现出优异的抗蠕变性能,所有的蠕变曲线均呈现出减速蠕变和稳态蠕变两个阶段;在150℃/50 MPa时稳态蠕变速率仅为6.48×10~(-11)s~(-1),蠕变量为0.007%;在200℃/50 MPa时稳态蠕变速率为4.26×10~(-9) s~(-1),蠕变量为0.226%;温度较低时(150℃)主要为扩散蠕变控制机制,温度较高时(175,200℃)蠕变机制以位错蠕变为主。蠕变过程中晶内析出的β′相与镁基体具有一定的位相关系:(020)β′//[10 10]Mg,[001]β′//[0001]Mg,阻碍位错运动,而晶界析出的β相可以钉扎晶界。二者协同作用,促进合金高温抗蠕变性能的提高。  相似文献   

16.
研究了AZ81-1.0Sm-0.6Nd镁合金的高温蠕变行为。试验结果表明,在50~70 MPa、150~200℃条件下,AZ81-1.0Sm-0.6Nd合金的抗蠕变性能优于基体(AZ81),在150℃/50 MPa条件下,AZ81-1.0Sm-0.6Nd合金的稳态蠕变速率为8.82×10-7 s-1,明显低于AZ81合金的1.95×10-6 s-1的稳态蠕变速率。根据应力指数n值与蠕变激活能Qc值分析结果,随着蠕变试验温度和应力的增加,合金的蠕变机制也在发生变化。  相似文献   

17.
试验研究了Sn-8Zn-3Bi无铅钎料在温度为55~100 ℃、压力为9.3~18.6 MPa范围内的压蠕变行为.结果表明,随温度和应力的升高,合金的压蠕变量增大,稳态蠕变速率的对数分别与应力的对数和温度呈线性关系.在试验温度下,应力指数n相近,平均值为3.82;在不同的应力下,表观激活能Qa相差不大,平均值为80.68 kJ/mol.材料结构常数A为6.83×104.压蠕变变形是位错滑移和位错攀移共同作用的结果.  相似文献   

18.
采用SEM、EBSD和TEM等手段研究了FGH96合金在650~750℃、690~810 MPa条件下的蠕变特征,揭示FGH96合金在不同服役条件下的蠕变机理。结果表明,当蠕变温度为704℃时,FGH96合金的蠕变性能随着应力水平的提高而降低;当加载应力为690 MPa时,FGH96合金的蠕变性能随着温度提高而显著降低,且FGH96合金的稳态蠕变速率对服役温度更为敏感,服役温度每提高30℃,将会导致蠕变速率提高一个数量级。当温度处于650~750℃范围、应力处于690~810 MPa范围时,FGH96合金的蠕变变形均以位错滑移为主,且位错在滑移过程中,会在(111ˉ)原子面上形成大量的微孪晶。在不同服役条件下,FGH96合金的蠕变断裂均呈现典型的沿晶断裂特征。  相似文献   

19.
研究了Ti-600合金在3种温度(550、600、650℃)、5种应力(150、200、250、300、350 MPa)下的蠕变性能,并分析了硅化物对合金蠕变性能的影响。研究结果表明,Ti-600合金具有较小的稳态蠕变速率及较大的蠕变激活能,反映出该合金具有较好的蠕变抗力。当温度升高、应力增大时,Ti-600合金的稳态蠕变速率增大。600℃下,当蠕变应力高达350 MPa时,Ti-600合金的稳态蠕变速率低至3.72×10-7s-1。Ti-600合金的蠕变激活能最高可达574.6kJ?mol-1,最低为332.7 kJ?mol-1。在蠕变过程中,Ti-600合金内析出了S2型(TiZr)6Si3硅化物,能够钉扎位错、阻碍位错滑移,提高合金的蠕变抗力。  相似文献   

20.
用RDL-50型拉伸蠕变试验机进行改装后的实验装置研究了铸态AgInCd合金在温度300~400℃及应力范围12~24 MPa内的压缩蠕变行为,分析了稳态速率与温度和应力的关系,计算了应力指数(n)和蠕变激活能(Q_a),并结合蠕变后样品在透射电子显微镜下的微观形貌及位错组态,探讨了合金的压缩蠕变机制。结果表明:随温度和应力水平的升高,合金的稳态蠕变速率增加。相比较指数关系,蠕变速率与应力之间更符合幂函数关系。300、350和400℃条件下,合金的蠕变应力指数n分别为3.31、4.09和5.77;12、18和24 MPa条件下,合金的蠕变激活能Q_a分别为68.1、103.7和131.6 kJ/mol。微观形貌以层错为主,孪生为300℃的主要蠕变机制,位错攀移生成位错墙为400℃的主要蠕变机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号