共查询到20条相似文献,搜索用时 62 毫秒
1.
对基本蚁群算法框架进行了改进,采用轮盘赌选择代替了基本框架中通过启发式函数和信息素选择路径,同时对信息素的更新方式也做出调整,提出了一种新的蚁群算法,使得其更适合解决连续函数问题.将这种改进的蚁群算法应用于带有约束条件的连续函数问题中,在典型实例中进行仿真测试,实验结果表明,提出的改进蚁群算法可以很好地解决带有约束条件的连续函数问题,并能迅速找到最优解. 相似文献
2.
蚁群算法是意大利学者Dorigo于1991年提出的一种模拟进化算法,通过模拟蚂蚁在协作搜索食物时的搜索行为来寻求最优解。蚁群算法提出后却在组合优化中获得广泛的应用,如调度、二次分配和网络路由等。同时大量的实验结果表明蚁群优化结果优于遗传算法、进化算法和模拟退火算法,因此如何将蚁群算法应用到连续问题优化并获得其在离散优化问题上同样优异的性能,成为目前的一个研究热点,也是该文的主要研究内容。 相似文献
3.
4.
5.
秦映波 《计算机光盘软件与应用》2012,(10):210-211
蚁群算法是意大利学者Dorigo于1991年提出的一种模拟进化算法,蚁群算法提出后却在组合优化中获得广泛的应用,如调度、二次分配和网络路由等,本文将蚁群算法进行改进并应用于PID控制器优化,得到了良好效果。 相似文献
6.
基于变异和动态信息素更新的蚁群优化算法 总被引:65,自引:0,他引:65
尽管蚁群优化算法在优化计算中已得到了很多应用,但在进行大规模优化时,其收敛时间过长仍是应用该算法的一个瓶颈.为此,提出了一种高速收敛算法.该算法采用一种新颖的动态信息素更新策略,以保证在每次搜索中,每只蚂蚁都对搜索做出贡献;同时,还采取了一种独特的变异策略,以对每次搜索的结果进行优化.计算机实验结果表明,该算法与最新的改进蚁群优化算法相比,其收敛速度提高了数十倍乃至数百倍以上. 相似文献
7.
8.
针对蚁群算法存在求解速度慢、容易出现早熟和停滞现象,提出一种基于参数动态变化和变异的自适应蚁群算法(PDMACS)。将参数分为全局参数和局部参数,对参数的功能进行讨论,设计局部参数q0随蚂蚁求解质量动态变化和全局参数?随平均节点分支数自适应调整的方法提高算法全局搜索能力,并采用一种简单高效的变异算法加快收敛速度。用TSPLIB中的范例进行比较实验,结果表明,与传统算法相比,该算法的求解质量、稳定性以及收敛速度都有所提高。 相似文献
9.
连续函数优化的一种新方法-蚁群算法 总被引:4,自引:2,他引:4
针对连续函数优化问题,给出了一种基于蚂蚁群体智能搜索的随机搜索算法,对目标函数没有可微的要求,可有效克服经典算法易于陷入局部最优解的常见弊病。对基本的蚁群算法做了一定的改进,通过几个函数寻优的结果表明,算法具有良好的效果。同时,运用遗传算法对蚁群算法中的一些重要参数进行了寻优,提高了蚁群算法的收敛速度。 相似文献
10.
11.
为了求解一般的函数优化,在对标准蚁群算法研究的基础上,将遗传算法的编码方式引入蚁群算法,对蚁群算法的信息素更新进行改进,并提出一种搜索矩阵表达方式,减少了搜索矩阵的规模,从而提高了搜索效率。通过对几个经典测试函数的求解,证明了算法的有效性。 相似文献
12.
蚁群算法求解函数优化中的参数设置 总被引:1,自引:0,他引:1
蚁群算法的参数设置一直是依靠经验和实验来确定,造成实验工作量大且难以得到最优的参数组合,影响了算法的使用。从基本蚂蚁算法出发,结合实验结果,讨论了α、β及ρ的变化对实验结果的影响,提出了相应的参数改进方案。并将经此方案修正的蚂蚁算法与基本蚂蚁算法同时运用于经典函数优化问题中,对仿真结果进行了对比。 相似文献
13.
14.
针对蚁群算法容易陷入局部最优解及搜索时间长等不足,引入一种基于连续空间的禁忌搜索算法,并将其与蚁群算法相结合,提出了一种引入禁忌搜索策略的蚁群算法,以求解连续对象优化问题。经测试验证了该算法不仅跳出局部最优解的能力更强,而且能较快地收敛到全局最优解,表明算法的有效性。 相似文献
15.
用蚁群算法进行多模函数优化时,容易陷入局部最优,从而影响了寻优精度和收敛速度。因此提出了一种用于求解连续空间优化问题的分组蚁群算法。该算法将连续空间优化问题的定义域划分成若干个子区域,并给每个子区域分配一组蚂蚁。每组蚂蚁在各自的区域里进行搜索,且在搜索过程采用“精英策略”并利用精英蚂蚁更新普通蚂蚁的位置信息,以加快算法的收敛速度。同时,当普通蚂蚁离精英蚂蚁之间的距离较长时,使用大步长搜索,以加快搜索速度,反之,采用小步长搜索,可提高搜索过程的精细程度。该方法使每组蚂蚁的搜索空间成倍地缩小并能有效地改善陷入局部最优的情况,从而能使收敛速度和精度大幅提高。计算机的仿真实验结果证实了这一结论。 相似文献
16.
针对土木工程领域中的复杂参数反分析问题,基于常规蚁群算法进行了数学模型的构建、算法结构分析,并采用残留信息素数量限制、信息素的持久性系数自适应控制和全局更新规则对算法进行了加强设计,提出了双参数交叉影响的连续域组合优化蚁群算法;同时通过选取五个比较敏感的控制因子:蚁群数量、算法收敛标准、最小信息素持久性系数、循环次数和信息素强度常量进行了数字仿真实验,提出了算法的优化组合参数。通过实例对这种参数识别方法进行了验证,理论结果与实测数据吻合较好,表明了算法的有效性,实现了蚁群算法在土木工程连续域问题方面的应用,丰富了蚁群算法的内涵。 相似文献
17.
基于觅食-返巢机制连续域蚁群算法 总被引:3,自引:0,他引:3
蚁群算法求解函数问题,人工蚂蚁的搜索范围和信息素浓度更新速度直接影响到是否能够获得全域最优解。为了获得更加稳定且准确的全域最优解,受自然蚂蚁觅食后返巢行为的启发,提出了具有觅食-返巢机制的蚁群算法。该算法主要通过增大人工蚂蚁的搜索范围以及加快信息素浓度的更新速度进行改进。通过函数测试,结果表明:觅食-返巢连续域蚁群算法相比于以往的遗传算法和连续域蚁群算法,能够得到更好的计算结果和运行时间。因此觅食-返巢机制使得蚁群算法求解全域最优解的能力获得了提高。 相似文献
18.
受自然界蚂蚁的觅食—返巢生物学特征启发,同时深入了解蚂蚁信息素成分,提出了一种能够解决函数多目标优化问题的改进蚁群算法——多目标觅食—返巢机制连续域蚁群算法(MO-FHACO)。该算法与传统蚁群算法相比,将信息素分为蚁巢信息素和食物信息素,并根据不同信息素设立了不同的释放和寻优机制。通过BNH和TNK问题验证,MO-FHACO算法在Pareto最优前端连续的情况下具有极佳的多目标优化能力;在Pa-reto最优前端不连续的情况下,也能得到较多且散布性较好的Pareto最优解。因此,MO-FHACO算法是一种有效的函数多目标优化算法。 相似文献
19.
一种求解函数优化的自适应蚁群算法 总被引:3,自引:0,他引:3
针对多极值连续函数优化问题,提出了一种自适应蚁群算法。该方法将解空间划分成若干子域,根据蚂蚁在搜索过程中所得解的分布状况动态的调节蚂蚁的路径选择策略和信息量更新策略,求出解所在的子域,然后在该子城内确定解的具体值。仿真结果表明谊算法具有不易陷入局部最优、解的精度高、收敛速度快、稳定性好等优点,其性能优于基本遗传算法以及克隆选择算法。 相似文献