首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The presence of sulfur in automotive exhaust is known to be detrimental to lean-NOx traps as SO2 is oxidized to SO3 that competes with NO2 for sites on the trap and is difficult to remove. In this study the effect of adding Cu to the prototypical Pt–BaO/γ-Al2O3 formulation on the system's tolerance for sulfur was investigated. It was found that in the absence of sulfur, Cu decreases the performance in terms of both NOx storage capacity and reduction of NOx to N2 during regeneration. In the presence of SO2, Cu provides a significant improvement in sulfur tolerance so that, after sulfur exposure, the storage capacity of the Cu-modified material can exceed that of the baseline material. The sulfur tolerance afforded by Cu is attributed to a moderation in the activity for SO2 oxidation resulting from the formation of a Pt–Cu bimetallic phase. The propensity for NO oxidation is also modified, but to a lesser effect. Evidence for the bimetallic phase is provided by temperature-programmed reduction (TPR) and electron microscopy. The impact of SO2 on the Cu-modified material is greater during the regenerative reduction cycle. In this case, the results suggest that sulfur blocks Pt and possibly Cu sites and that the sulfur is not removed by oxidation during the subsequent storage cycle. Hence, activity lost during the reduction cycle is not restored. In contrast, sulfur that blocks Pt sites on the baseline material during the reduction cycle is subsequently oxidized and desorbs from the Pt, restoring the activity. However, some of the resulting SO3 reacts with the BaO to form BaSO4, and there is a partial loss of storage capacity.  相似文献   

2.
The oxidative dehydrogenation (OXDH) of n-butane and 1-butene on undoped and K-doped alumina-supported vanadia catalysts has been studied. The low selectivity to OXDH products on alumina-supported vanadia catalysts is a consequence of the isomerization of olefins (low temperatures) and the formation of carbon oxides (high temperatures) on acid sites. The presence of potassium results in a decrease of the number of acid sites and a higher selectivity to OXDH products from both n-butane and 1-butene. Infrared spectroscopy data of 1-butene adsorbed on the catalysts suggest the presence of different adsorbed species: (i) O-containing species on the undoped catalyst, or (ii) adsorbed butadiene on K-doped catalyst. A reaction network including parallel and consecutive reactions is proposed.  相似文献   

3.
A series of CuO–ZnO/Al2O3 solids were prepared by wet impregnation using Al(OH)3 solid and zinc and copper nitrate solutions. The amounts of copper and zinc oxides were varied between 10.3 and 16.0 wt% CuO and between 0.83 and 7.71 wt% ZnO. The prepared solids were subjected to thermal treatment at 400–1000°C. The solid–solid interactions between the different constituents of the prepared solids were studied using XRD analysis of different calcined solids. The surface characteristics of various calcined adsorbents were investigated using nitrogen adsorption at −196°C and their catalytic activities were determined using CO-oxidation by O2 at temperatures ranged between 125°C and 200°C.

The results showed that CuO interacts with Al2O3 to produce copper aluminate at ≥600°C and the completion of this reaction requires heating at 1000°C. ZnO hinders the formation of CuAl2O4 at 600°C while stimulates its production at 800°C. The treatment of CuO/Al2O3 solids with different amounts of ZnO increases their specific surface area and total pore volume and hinders their sintering (the activation energy of sintering increases from 30 to 58 kJ mol−1 in presence of 7.71 wt% ZnO). This treatment resulted in a progressive decrease in the catalytic activities of the investigated solids but increased their catalytic durability. Zinc and copper oxides present did not modify the mechanism of the catalyzed reaction but changed the concentration of catalytically active constituents (surface CuO crystallites) without changing their energetic nature.  相似文献   


4.
Mixed oxides of alumina and zirconia having a relative composition of 50, 80 and 100% Zr2O were synthesized by means of sol–gel methods. The catalysts were sulfated with H2SO4 1N, and were loaded with 0.3% Pt metal using the incipient wetness technique. The characterization of the physicochemical properties was carried out using XRD, N2-adsorption at 78 K, and SEM. The catalytic properties of the Al2O3–ZrO2 series were studied by means of dehydration of 2-propanol at 180°C and isomerization of n-hexane at 250°C, 1 atm. The sulfated solids presented a high surface acidity and a limited crystallinity, together with high activity for alcohol dehydration (i.e. 2-propanol). On the other hand, the Al2O3–ZrO2 solid solutions (i.e. those having a 20–80% composition) turned out to be the most active ones for the isomerization of n-hexane.  相似文献   

5.
The promoting effect of supported metals on alumina catalyst was investigated for the reduction of nitrogen monoxide in oxygen-rich atmospheres. For NO reduction with propene over impregnated CoO/A12O3, the first reaction step was found to be the oxidation of NO to NO2 probably catalyzed by dispersed cobalt species. The next reaction step, which is the reaction of NO2 with propene to form N2, was considered to take place on the alumina surface. Although the activity of impregnated FeO/A12O3 was low because of the presence of large iron oxide particles catalyzing propene oxidation with dioxygen, FeO/A12O3 prepared with sol-gel method showed excellent deNOx activity.  相似文献   

6.
The effect of treatment with different mineral acids (H2SO4, H3PO4, HNO3 and HCl) on the activity of monolithic CoOx/γ-Al2O3 catalysts in the reduction of nitric oxide with methane in the presence of oxygen (CH4-SCR of NOx) was studied. Their behaviour in the methane oxidation reaction in both the presence and absence of NOx was determined in order to interpret the results in terms of intrinsic activity and competition between both processes. Depending on the nature of the acid used, significant differences were observed in the catalytic activities which were related to the textural states, surface acidities and the nature of the detected species. The best results were obtained after treatment with H2SO4, which increased the activity towards NOx elimination compared to the other catalysts. This behaviour was attributed not only to an increase in surface acidity but also to the stabilisation of the active Co2+ species, thus avoiding the formation of Co3O4 spinel that is responsible for the strongly adsorbed NOx species that lead to NO2 formation which increase the rate of the undesired methane oxidation reaction at high temperatures.  相似文献   

7.
Three different supports were prepared with distinct magnesia–alumina ratio x = MgO/(MgO + Al2O3) = 0.01, 0.1 and 0.5. Synthesized supports were impregnated with Co and Mo salts by the incipient wetness method along with 1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid (CyDTA) as chelating agent. Catalysts were characterized by BET surface area, Raman spectroscopy, SEM-EDX and HRTEM (STEM) spectroscopy techniques. The catalysts were evaluated for the thiophene hydrodesulfurization reaction and its activity results are discussed in terms of using chelating agent during the preparation of catalyst. A comparison of the activity between uncalcined and calcined catalysts was made and a higher activity was obtained with calcined MgO–Al2O3 supported catalysts. Two different MgO containing calcined catalysts were tested at micro-plant with industrial feedstocks of heavy Maya crude oil. The effect of support composition was observed for hydrodesulfurization (HDS), hydrodemetallization (HDM), hydrodeasphaltenization (HDAs) and hydrodenitrogenation (HDN) reactions, which were reported at temperature of 380 °C, pressure of 7 MPa and space-velocity of 1.0 h−1 during 204 h of time-on-stream (TOS).  相似文献   

8.
Effect of additives, In2O3, SnO2, CoO, CuO and Ag, on the catalytic performance of Ga2O3–Al2O3 prepared by sol–gel method for the selective reduction of NO with propene in the presence of oxygen was studied. As for the reaction in the absence of H2O, CoO, CuO and Ag showed good additive effect. When H2O was added to the reaction gas, the activity of CoO-, CuO- and Ag-doped Ga2O3–Al2O3 was depressed considerably, while an intensifying effect of H2O was observed for In2O3- and SnO2-doped Ga2O3–Al2O3. Of several metal oxide additives, In2O3-doped Ga2O3–Al2O3 showed the highest activity for NO reduction by propene in the presence of H2O. Kinetic studies on NO reduction over In2O3–Ga2O3–Al2O3 revealed that the rate-determining step in the absence of H2O is the reaction of NO2 formed on Ga2O3–Al2O3 with C3H6-derived species, whereas that in the presence of H2O is the formation of C3H6-derived species. We presumed the reason for the promotional effect of H2O as follows: the rate for the formation of C3H6-derived species in the presence of H2O is sufficiently fast compared with that for the reaction of NO2 with C3H6-derived species in the absence of H2O. Although the retarding effect of SO2 on the activity was observed for all of the catalysts, SnO2–Ga2O3–Al2O3 showed still relatively high activity in the lower temperature region.  相似文献   

9.
Ni–Mo/Al2O3–MCM-41 supported catalysts have been investigated for modification of MCM-41 by using sol–gel alumina incorporation method. Different catalysts were synthesized with variation of Si/Al molar ratios of 10, 50, 100 and 200. High specific surface area ordered meso-porous solid (MCM-41) was synthesized by using organic template method. In order to modify the low acidity of silica solid, the surface of MCM-41 was modified by incorporation of alumina. The surface acidity of solids modified significantly with variation of alumina content in the supports. The sol–gel method of alumina incorporation was used, which does not modify extensively the pore characteristics of MCM-41 material during the preparation of Al2O3–MCM-41. The X-ray diffraction intensities indicated that alumina as well as MCM-41 were present in the synthesized supports. Additionally, the hydrothermal stability of the Al2O3–MCM-41 materials was maintained up to 873 K using sever conditions like 100% water vapor stream. The catalytic activity of the catalysts was tested in the hydrodesulfurization (HDS) of dibenzothiophene (DBT). Selectivity was oriented mainly to the production of biphenyl (BP) and for high Si/Al ratios toward cyclohexylbenzene (CHB) and showed a higher conversion and better selectivity to hydrogenation (cyclohexylbenzene).  相似文献   

10.
The importance of the hydrodearomatisation (HDA) is increasing together with tightening legislation of fuel quality and exhaust emissions. The present study focuses on hydrogenation (HYD) kinetics of the model aromatic compound naphthalene, found in typical diesel fraction, in n-hexadecane over a NiMo (nickel molybdenum), Ni (nickel) and Ru (ruthenium) supported on trilobe alumina (Al2O3) catalysts. Kinetic reaction expressions based on the mechanistic Langmuir–Hinshelwood (L–H) model were derived and tested by regressing the experimental data that translated the effect of both naphthalene and hydrogen concentration at a constant temperature (523.15 and 573.15 K over the NiMo catalyst and at 373.15 K over the Ni and Ru/Al2O3 catalysts) on the initial reaction rate. The L–H equation, giving an adequate fit to the experimental data with physically meaningful parameters, suggested a competitive adsorption between hydrogen and naphthalene over the presulphided NiMo catalyst and a non-competitive adsorption between these two reactants over the prereduced Ni and Ru/Al2O3 catalysts. In addition, the adsorption constant values indicated that the prereduced Ru catalyst was a much more active catalyst towards naphthalene HYD than the prereduced Ni/Al2O3 or the presulphided NiMo/Al2O3 catalyst.  相似文献   

11.
以金属硝酸盐为原料,采用等体积浸渍法制备了CuMnCo/γ - Al2O3催化剂,通过臭氧催化氧化中试试验装置,对炼油厂废水的二级处理出水进行深度研究.累计1000h的反应结果表明,在保证出口COD为100 mg·L-1以下,炼油废水的CODCr平均去除率达到60.3%.通过物理吸附、热重-差热、扫描电镜、X射线衍射和...  相似文献   

12.
A series of Pd/Al2O3 catalysts with a wide range of mean Pd particle sizes (ca. 2–30 nm in diameter) was prepared by using various precursors (H2PdCl4, Pd(NO3)2 and Pd(AcAc)2) and pre-treatments. The mean particle size of reduced samples was determined by H2 chemisorption. The catalytic activity in methane oxidation under lean burn conditions was measured. The oxidation of reduced samples was studied at 300 °C. The extent of oxidation was found to decrease with increasing mean particle size. While small particles (<5 nm) oxidised very rapidly, the oxidation of large particles (ca. >15 nm) proceeded via a two-step process, being first fast and then slow. The decomposition of oxide species was studied by temperature-programmed experiments under vacuum. Two distinct oxidised species with different stability were evidenced depending on the particle size. Oxidised species in larger particles were found of lower stability than in smaller ones. A correlation between the existence of distinct types of oxide species and catalytic properties in methane oxidation was discussed.  相似文献   

13.
Two series of zeolite-based hydrocracking catalysts were prepared to study the effects of the support type, preparation method and metal loading on catalyst properties and hydrocracking activity for hydrotreated vacuum gas oil (HT-VGO). The support used was γ-Al2O3 and β-zeolite in the first series and γ-Al2O3 and USY-zeolite in the second series. Nickel and tungsten were loaded as active metals on these supports. The prepared catalysts were characterized as to their surface area, pore volume, thermal stability, reducibility and acidity characteristics. The characterization results revealed that catalysts displayed significant differences in properties dependent on the preparation method and the type of support used. Catalysts from both series showed promising results for HT-VGO hydrocracking in the batch reactor. A correlation exists between the reducibility of oxidic form and the hydrogenation activity of the sulfided form of the catalysts. The higher the reducibility, the higher the hydrogenation activity. Catalysts prepared on mixed supports gave higher amounts of saturates.  相似文献   

14.
C. Neyertz  M. A. Volpe  C. Gigola   《Catalysis Today》2000,57(3-4):255-260
We have studied the activity and selectivity of Pd/γ-Al2O3, VOx/γ-Al2O3 and Pd–VOx/γ-Al2O3 catalysts for the decomposition of NO and the reduction of NO with CO. Pd–VOx/γ-Al2O3 catalysts were prepared by anchoring Pd(AcAc)2 on VOx/γ-Al2O3. Characterization of the binary samples by hydrogen chemisorption and TPR measurements indicated that the reduction of VOx is enhanced by a close contact with palladium and that partially reduced vanadia decorate noble metal particles. This palladium–vanadium interaction alters the catalytic properties of palladium: the activity for NO decomposition is higher for the binary sample and, for the NO–CO reaction, both the activity and the selectivity to N2 increase when vanadium is in contact with palladium.  相似文献   

15.
采用溶胶-凝胶法制备CuO/CoFe2O4粒子,并与P25复合制备纳米催化剂CuO/CoFe2O4-TiO2.通过模拟太阳光催化降解亚甲基蓝,对催化剂活性进行研究,采用SEM、TEM、XRD和UV-Vis DRS方法对催化剂进行表征.结果表明,CuO/CoFe2O4粒子均匀分散在P25微粒表面,平均粒径为60 nm.并...  相似文献   

16.
Monolithic structures made of cordierite, γ-Al2O3 and steel have been prepared as catalysts and tested for Fischer–Tropsch activity. The monoliths made of cordierite and steel were washcoated with a 20 wt.% Co–1 wt.% Re/γ-Al2O3 Fischer–Tropsch catalyst whereas the γ-Al2O3 monoliths were made by direct impregnation with an aqueous solution of the Co and Re salts resulting in a loading of 12 wt.% Co and 0.5 wt.% Re. The activity and selectivity of the different monoliths were compared with the corresponding powder catalysts.

Higher washcoat loadings resulted in decreased C5+ selectivity and olefin/paraffin ratios due to increased transport limitations. The impregnated γ-Al2O3 monoliths also showed similar C5+ selectivities as powder catalysts of small particle size (38–53 μm). Lower activities were observed with the steel monoliths probably due to experimental problems.  相似文献   


17.
The relationship between the state of Ru on different supports and catalytic activity in the oxidation of propene and carbon black was investigated for catalysts prepared by different impregnation methods. It is demonstrated that the addition of ruthenium to ceria (CeO2), alumina (Al2O3) and ceria–alumina significantly improves the reactivity: the temperature of carbon black oxidation decreases by 100–140 °C. It is also shown that the addition of Ru to the different supports is very beneficial for the total oxidation of propene. Temperature programmed reduction (TPR) experiments of the catalysts showed that the oxygen species of ruthenium oxides are reduced at low temperatures which is the main reason of its high reactivity in oxidation reactions.  相似文献   

18.
采用等体积浸渍法制备了Cu/Al_2O_3及Cu-Ni/Al_2O_3催化剂,将其应用于乙炔选择性加氢反应。结果表明,与Cu/Al_2O_3催化剂相比,Cu-Ni/Al_2O_3催化剂的加氢活性及乙烯选择性(当反应出口尾气中乙炔物质的量分数减少到0.003%时)明显提高。通过对Cu与Ni的浸渍顺序考察发现,先浸渍Ni制得的Cu-Ni/Al_2O_3催化剂活性有所下降,但乙烯选择性提高;通过对Ni含量的考察发现,当Ni质量分数为2%时,催化剂性能最佳。  相似文献   

19.
The present paper gives a detailed review of the different studies under investigation in our laboratory concerning the use of TiO2 and TiO2–Al2O3 composites prepared by chemical vapor deposition (CVD) as support for sulfide catalysts in the HDS of dibenzothiophene (DBT) derivatives. The supports investigated here are: TiO2 (from Degussa, 50 m2/g), Al2O3 (Nikki, 186 m2/g) and TiO2–Al2O3 supports prepared by CVD of TiCl4 on alumina. Using several characterization techniques, we have demonstrated that the support composite presents a high dispersion of TiO2 over γ-Al2O3 without forming precipitates up to ca. 11 wt.% loading. Moreover, the textural properties of the support composite are comparable to those of alumina. XPS investigations of Mo and NiMo catalysts supported on the different carriers show that Mo-oxide species exhibit a higher degree of sulfidation on the surface of TiO2 and TiO2–Al2O3 than on alumina. The HDS tests of 4,6-DMDBT under mild operating conditions (573 K, 3 MPa) show that sulfide catalysts supported on the composite support (ca. 11 wt.%) are more active than those supported on to TiO2 or Al2O3. This higher HDS catalytic activity is attributed to the promotion of the hydrodesulfurization pathway, whereby the pre-hydrogenation of one of the aromatic rings adjacent to the thiophenic one may reduce the steric hindrance caused by the two methyl groups adjacent to the sulfur atom during the C–S bond cleavage.  相似文献   

20.
Carbon black oxidation in the presence of CeO2, Al2O3 and manganese oxide catalysts has been studied in tight contact conditions. In the presence of manganese based catalysts, the temperature gain is about 275 °C compared to the non-catalysed carbon black oxidation. The contribution of the manganese species to enhance the reactivity of carbon black oxidation has been evaluated by EPR technique. For Mn/Ce + CB mixtures the Mn2+ content considerably increases consequently to tight milled treatment indicating the reduction of some manganese species with higher oxidation states into Mn2+ ions. This phenomenon can be considered as the first step in the carbon black oxidation mechanism in the presence of Mn/Ce catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号