首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PHANTOM is a tree level Monte Carlo for six parton final states at proton-proton, proton-antiproton and electron-positron colliders at and including possible interferences between the two sets of diagrams. This comprehends all purely electroweak contributions as well as all contributions with one virtual or two external gluons. It can generate unweighted events for any set of processes and it is interfaced to parton shower and hadronization packages via the latest Les Houches Accord protocol. It can be used to analyze the physics of boson-boson scattering, Higgs boson production in boson-boson fusion, and three boson production.

Program summary

Program title:PHANTOM (V. 1.0)Catalogue identifier: AECE_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECE_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 175 787No. of bytes in distributed program, including test data, etc.: 965 898Distribution format: tar.gzProgramming language: Fortran 77Computer: Any with a UNIX, LINUX compatible Fortran compilerOperating system: UNIX, LINUXRAM: 500 MBClassification: 11.1External routines: LHAPDF (Les Houches Accord PDF Interface, http://projects.hepforge.org/lhapdf/), CIRCE (beamstrahlung for e+e ILC collider).Nature of problem: Six fermion final state processes have become important with the increase of collider energies and are essential for the study of top, Higgs and electroweak symmetry breaking physics at high energy colliders. Since thousands of Feynman diagrams contribute in a single process and events corresponding to hundreds of different final states need to be generated, a fast and stable calculation is needed.Solution method:PHANTOM is a tree level Monte Carlo for six parton final states at proton-proton, proton-antiproton and electron-positron colliders. It computes all amplitudes at and including possible interferences between the two sets of diagrams. The matrix elements are computed with the helicity formalism implemented in the program PHACT [1]. The integration makes use of an iterative-adaptive multichannel method which, relying on adaptivity, allows the use of only a few channels per process. Unweighted event generation can be performed for any set of processes and it is interfaced to parton shower and hadronization packages via the latest Les Houches Accord protocol.Restrictions: All Feynman diagrams are computed al LO.Unusual features: Phantom is written in Fortran 77 but it makes use of structures. The g77 compiler cannot compile it as it does not recognize the structures. The Intel, Portland Group, True64 HP Fortran 77 or Fortran 90 compilers have been tested and can be used.Running time: A few hours for a cross section integration of one process at per mille accuracy. One hour for one thousand unweighted events.References:
[1]
A. Ballestrero, E. Maina, Phys. Lett. B 350 (1995) 225, hep-ph/9403244; A. Ballestrero, PHACT 1.0, Program for helicity amplitudes Calculations with Tau matrices, hep-ph/9911318, in: B.B. Levchenko, V.I. Savrin (Eds.), Proceedings of the 14th International Workshop on High Energy Physics and Quantum Field Theory (QFTHEP 99), SINP MSU, Moscow, p. 303.
  相似文献   

2.
The AcerMC Monte Carlo Event Generator is dedicated for the generation of Standard Model background processes at pp LHC collisions. The program itself provides a library of the massive matrix elements and phase space modules for generation of a set of selected processes: , , , , and complete electroweak process. The hard process event, generated with one of these modules, can be completed by the initial and final state radiation, hadronization and decays, simulated with either PYTHIA or HERWIG Monte Carlo event generator. Interfaces to both of these generators are provided in the distribution version. The matrix element codes have been derived with the help of the MADGRAPH package. The phase-space generation is based on the multi-channel self-optimizing approach as proposed in NEXTCALIBUR event generator. Eventually, additional smoothing of the phase space was obtained by using a modified ac-VEGAS routine in order to improve the generation efficiency.  相似文献   

3.
We present TaylUR, a Fortran 95 module to automatically compute the numerical values of a complex-valued function's derivatives with respect to several variables up to an arbitrary order in each variable, but excluding mixed derivatives. Arithmetic operators and Fortran intrinsics are overloaded to act correctly on objects of a defined type taylor, which encodes a function along with its first few derivatives with respect to the user-defined independent variables. Derivatives of products and composite functions are computed using Leibniz's rule and Faà di Bruno's formula. TaylUR makes heavy use of operator overloading and other Fortran 95 features such as elemental functions.

Program summary

Program title: TaylURCatalogue identifier:ADXR_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXR_v1_0Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandLicensing provisions:noneProgramming language:Fortran 95Computer:Any computer with a conforming Fortran 95 compilerOperating system:Any system with a conforming Fortran 95 compilerNo. of lines in distributed program, including test data, etc.:6286No. of bytes in distributed program, including test data, etc:14 994Distribution format:tar.gzNature of problem:Problems that require potentially high orders of derivatives with respect to some variables, such as e.g. expansions of Feynman diagrams in particle masses in perturbative Quantum Field Theory, and which cannot be treated using existing Fortran modules for automatic differentiation [C.W. Straka, ADF95: Tool for automatic differentiation of a FORTRAN code designed for large numbers of independent variables, Comput. Phys. Comm. 168 (2005) 123-139, arXiv:cs.MS/0503014; S. Stamatiadis, R. Prosmiti, S.C. Farantos, auto_deriv: Tool for automatic differentiation of a FORTRAN code, Comput. Phys. Comm. 127 (2000) 343-355].Solution method:Arithmetic operators and Fortran intrinsics are overloaded to act correctly on objects of a defined type taylor, which encodes a function along with its first few derivatives with respect to the user-defined independent variables. Derivatives of products and composite functions are computed using Leibniz's rule and Faà di Bruno's formula.Restrictions:Memory and CPU time constraints may restrict the number of variables and Taylor expansion order that can be achieved. Loss of numerical accuracy due to cancellation may become an issue at very high orders.Unusual features:No mixed higher-order derivatives are computed. The complex conjugation operation assumes all independent variables to be real.Running time:The running time of TaylUR operations depends linearly on the number of variables. Its dependence on the Taylor expansion order varies from linear (for linear operations) through quadratic (for multiplication) to exponential (for elementary function calls).  相似文献   

4.
WPHACT 2.0 is the new fully massive version of a MC program and unweighted event generator which computes all Standard Model processes with four fermions in the final state at e+e colliders. The program can now generate unweighted events for any subset of all four fermion final states in a single run, by making use of dedicated pre-samples which can cover the entire phase space. Improvements with respect to WPHACT 1.0 include the Imaginary Fermion Loop gauge restoring scheme, new phase space mappings, a new input system, the possibility to compute subsets of Feynman diagrams and options for including ISR via QEDPS, running αQED, CKM mixing, resonances in channels.  相似文献   

5.
auto_deriv is a module comprised of a set of fortran 95 procedures which can be used to calculate the first and second partial derivatives (mixed or not) of any continuous function with many independent variables. The mathematical function should be expressed as one or more fortran 77/90/95 procedures. A new type of variables is defined and the overloading mechanism of functions and operators provided by the fortran 95 language is extensively used to define the differentiation rules. Proper (standard complying) handling of floating-point exceptions is provided by using the IEEE_EXCEPTIONS intrinsic module (Technical Report 15580, incorporated in fortran 2003).

New version program summary

Program title: AUTO_DERIVCatalogue identifier: ADLS_v2_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADLS_v2_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 2963No. of bytes in distributed program, including test data, etc.: 10 314Distribution format: tar.gzProgramming language: Fortran 95 + (optionally) TR-15580 (Floating-point exception handling)Computer: all platforms with a Fortran 95 compilerOperating system: Linux, Windows, MacOSClassification: 4.12, 6.2Catalogue identifier of previous version: ADLS_v1_0Journal reference of previous version: Comput. Phys. Comm. 127 (2000) 343Does the new version supersede the previous version?: YesNature of problem: The need to calculate accurate derivatives of a multivariate function frequently arises in computational physics and chemistry. The most versatile approach to evaluate them by a computer, automatically and to machine precision, is via user-defined types and operator overloading. AUTO_DERIV is a Fortran 95 implementation of them, designed to evaluate the first and second derivatives of a function of many variables.Solution method: The mathematical rules for differentiation of sums, products, quotients, elementary functions in conjunction with the chain rule for compound functions are applied. The function should be expressed as one or more Fortran 77/90/95 procedures. A new type of variables is defined and the overloading mechanism of functions and operators provided by the Fortran 95 language is extensively used to implement the differentiation rules.Reasons for new version: The new version supports Fortran 95, handles properly the floating-point exceptions, and is faster due to internal reorganization. All discovered bugs are fixed.Summary of revisions:
The code was rewritten extensively to benefit from features introduced in Fortran 95. Additionally, there was a major internal reorganization of the code, resulting in faster execution. The user interface described in the original paper was not changed. The values that the user must or should specify before compilation (essentially, the number of independent variables) were moved into ad_types module.
There were many minor bug fixes. One important bug was found and fixed; the code did not handle correctly the overloading of in a∗∗λ when a=0.
The case of division by zero and the discontinuity of the function at the requested point are indicated by standard IEEE exceptions (IEEE_DIVIDE_BY_ZERO and IEEE_INVALID respectively). If the compiler does not support IEEE exceptions, a module with the appropriate name is provided, imitating the behavior of the ‘standard’ module in the sense that it raises the corresponding exceptions. It is up to the compiler (through certain flags probably) to detect them.
Restrictions: None imposed by the program. There are certain limitations that may appear mostly due to the specific implementation chosen in the user code. They can always be overcome by recoding parts of the routines developed by the user or by modifying AUTO_DERIV according to specific instructions given in [1]. The common restrictions of available memory and the capabilities of the compiler are the same as the original version.Additional comments: The program has been tested using the following compilers: Intel ifort, GNU gfortran, NAGWare f95, g95.Running time: The typical running time for the program depends on the compiler and the complexity of the differentiated function. A rough estimate is that AUTO_DERIV is ten times slower than the evaluation of the analytical (‘by hand’) function value and derivatives (if they are available).References:
[1]
S. Stamatiadis, R. Prosmiti, S.C. Farantos, AUTO_DERIV: tool for automatic differentiation of a Fortran code, Comput. Phys. Comm. 127 (2000) 343.
  相似文献   

6.
If is an eigenvalue of a time-delay system for the delay τ0 then is also an eigenvalue for the delays τk?τ0+k2π/ω, for any kZ. We investigate the sensitivity, periodicity and invariance properties of the root for the case that is a double eigenvalue for some τk. It turns out that under natural conditions (the condition that the root exhibits the completely regular splitting property if the delay is perturbed), the presence of a double imaginary root for some delay τ0 implies that is a simple root for the other delays τk, k≠0. Moreover, we show how to characterize the root locus around . The entire local root locus picture can be completely determined from the square root splitting of the double root. We separate the general picture into two cases depending on the sign of a single scalar constant; the imaginary part of the first coefficient in the square root expansion of the double eigenvalue.  相似文献   

7.
A queue layout of a graph consists of a linear order of its vertices, and a partition of its edges into queues, such that no two edges in the same queue are nested. The minimum number of queues in a queue layout of a graph G, denoted by qn(G), is called the queuenumber of G. Heath and Rosenberg [SIAM J. Comput. 21 (1992) 927-958] showed that boolean n-cube (i.e., the n-dimensional hypercube) can be laid out using at most n−1 queues. Heath et al. [SIAM J. Discrete Math. 5 (1992) 398-412] showed that the ternary n-cube can be laid out using at most 2n−2 queues. Recently, Hasunuma and Hirota [Inform. Process. Lett. 104 (2007) 41-44] improved the upper bound on queuenumber to n−2 for hypercubes. In this paper, we deal with the upper bound on queuenumber of a wider class of graphs called k-ary n-cubes, which contains hypercubes and ternary n-cubes as subclasses. Our result improves the previous bound in the case of ternary n-cubes. Let denote the n-dimensional k-ary cube. This paper contributes three main results as follows:
(1)
if n?3.
(2)
if n?2 and 4?k?8.
(3)
if n?1 and k?9.
  相似文献   

8.
The rth order nonlinearity of a Boolean function is an important cryptographic criterion in analyzing the security of stream as well as block ciphers. It is also important in coding theory as it is related to the covering radius of the Reed-Muller code R(r,n). In this paper we deduce the lower bounds of the second order nonlinearities of the following two types of Boolean functions:
1.
with d=22r+2r+1 and , where n=6r.
2.
, where x,yF2t,n=2t,n?6 and i is an integer such that 1?i<t,gcd(2t-1,2i+1)=1.
For some λ, the functions of the first type are bent functions, whereas Boolean functions of the second type are all bent functions, i.e., they possess the maximum first order nonlinearity. It is demonstrated that in some cases our bounds are better than the previously obtained bounds.  相似文献   

9.
The first version of a computer program eett6f for calculating cross sections of e+e→6 fermions processes relevant for a -pair production and decay at centre of mass energies typical for linear colliders is presented. eett6f v. 1.0 allows for calculating both the total and differential cross sections at tree level of the Standard Model (SM). The program can be used as the Monte Carlo generator of unweighted events as well.  相似文献   

10.
11.
HiggsBounds 2.0.0 is a computer code which tests both neutral and charged Higgs sectors of arbitrary models against the current exclusion bounds from the Higgs searches at LEP and the Tevatron. As input, it requires a selection of model predictions, such as Higgs masses, branching ratios, effective couplings and total decay widths. HiggsBounds 2.0.0 then uses the expected and observed topological cross section limits from the Higgs searches to determine whether a given parameter scenario of a model is excluded at the 95% C.L. by those searches. Version 2.0.0 represents a significant extension of the code since its first release (1.0.0). It includes now 28/53 LEP/Tevatron Higgs search analyses, compared to the 11/22 in the first release, of which many of the ones from the Tevatron are replaced by updates. As a major extension, the code allows now the predictions for (singly) charged Higgs bosons to be confronted with LEP and Tevatron searches. Furthermore, the newly included analyses contain LEP searches for neutral Higgs bosons (H) decaying invisibly or into (non-flavour tagged) hadrons as well as decay-mode independent searches for neutral Higgs bosons, LEP searches via the production modes τ+τH and , and Tevatron searches via . Also, all Tevatron results presented at the ICHEP?10 are included in version 2.0.0. As physics applications of HiggsBounds 2.0.0 we study the allowed Higgs mass range for model scenarios with invisible Higgs decays and we obtain exclusion results for the scalar sector of the Randall–Sundrum model using up-to-date LEP and Tevatron direct search results.

Program summary

Program title: HiggsBoundsCatalogue identifier: AEFF_v2_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFF_v2_0.htmlProgram obtainable from: CPC Program Library, Queen?s University, Belfast, N. IrelandLicensing provisions: GNU General Public Licence version 3No. of lines in distributed program, including test data, etc.: 74 005No. of bytes in distributed program, including test data, etc.: 1 730 996Distribution format: tar.gzProgramming language: Fortran 77, Fortran 90 (two code versions are offered).Classification: 11.1.Catalogue identifier of previous version: AEFF_v1_0Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 138External routines: HiggsBounds requires no external routines/libraries. Some sample programs in the distribution require the programs FeynHiggs 2.7.1 or CPsuperH2.2 to be installed.Does the new version supersede the previous version?: YesNature of problem: Determine whether a parameter point of a given model is excluded or allowed by LEP and Tevatron neutral and charged Higgs boson search results.Solution method: The most sensitive channel from LEP and Tevatron searches is determined and subsequently applied to test this parameter point. The test requires as input, model predictions for the Higgs boson masses, branching ratios and ratios of production cross sections with respect to reference values.Reasons for new version: This version extends the functionality of the previous version.Summary of revisions: List of included Higgs searches has been expanded, e.g. inclusion of (singly) charged Higgs boson searches. The input required from the user has been extended accordingly.Restrictions: Assumes that the narrow width approximation is applicable in the model under consideration and that the model does not predict a significant change to the signature of the background processes or the kinematical distributions of the signal cross sections.Running time: About 0.01 seconds (or less) for one parameter point using one processor of an Intel Core 2 Quad Q6600 CPU at 2.40 GHz for sample model scenarios with three Higgs bosons. It depends on the complexity of the Higgs sector (e.g. the number of Higgs bosons and the number of open decay channels) and on the code version.  相似文献   

12.
13.
An up-date of the Racah module is presented, adopted to Maple 11 and 12, which supports both, algebraic manipulations of expressions from Racah's algebra as well as numerical computations of many functions and symbols from the theory of angular momentum. The functions that are known to the program include the Wigner rotation matrices and n-j symbols, Clebsch-Gordan and Gaunt coefficients, spherical harmonics of various kinds as well as several others.

Program summary

Program title:RacahCatalogue identifier: ADFV_v10_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADFV_v10_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 30 436No. of bytes in distributed program, including test data, etc.: 544 866Distribution format: tar.gzProgramming language: Maple 11 and 12Computer: All computers with a license for the computer algebra package Maple [1]Operating system: Suse Linux 10.2+ and Ubuntu 8.10Classification: 4.1, 5Catalogue identifier of previous version: ADFV_v9_0Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 616Does the new version supersede the previous version?: YesNature of problem: The theories of angular momentum and spherical tensor operators, sometimes known also as Racah's algebra, provide a powerful calculus for studying spin networks and (quantum) many-particle systems. For an efficient use of these theories, however, one requires not only a reliable handling of a large number of algebraic transformations and rules but, more often than not, also a fast access to their standard quantities, such as the Wigner n-j symbols, Clebsch-Gordan coefficients, spherical harmonics of various kinds, the rotation matrices, and many others.Solution method: A set of Maple procedures has been developed and maintained during the last decade which supports both, algebraic manipulations as well as fast computations of the standard expressions and symbols from the theory of angular momentum [2,3]. These procedures are based on a sizeable set of group-theoretical (and often rather sophisticated) relations which has been discussed and proven in the literature; see the monograph by Varshalovich et al. [4] for a comprehensive compilation. In particular the algebraic manipulation of complex (Racah) expressions may result in considerable simplifications, thus reducing the ‘numerical costs’, and often help obtain further insight into the behaviour of physical systems.Reasons for new version: A revision of the Racah module became necessary for mainly three reasons: (i) Since the last extension of the Racah procedures [5], which was developed within the framework of Maple 8, several updates of Maple were distributed by the vendors (currently Maple 13) and required a number of adaptations to the source code; (ii) the increasing size and program structure of the Racah module made it advisible to separate the (procedures for the treatment of the) atomic shell model from the manipulation and computation of Racah expressions. Therefore, the computation of angular coefficients for different coupling schemes, (grand) coefficients of fractional parentage as well as the matrix elements (of various irreducible tensors from the shell model) is to be maintained from now on independently within the Jucys module; (iii) a number of bugs and inconsistencies have been reported to us and corrected in the present version.Summary of revisions: In more detail, the following changes have been made:
1.
Since recent versions of Maple now support the automatic type checking of all incoming arguments and the definition of user-defined types; we have adapted most of the code to take advantage of these features, and especially those commands that are accessible by the user.
2.
In the computation of the Wigner n-j symbols and Clebsch-Gordan coefficients, we now return a ‘0’ in all cases in which the triangular rules are not fulfilled, for example, if δ(a,b,c)=0 for or . This change in the program saves the user making these tests on the quantum numbers explicitly everytime (in the summation over more complex expressions) that such a symbol or coefficient is invoked. The program still terminates with an error message if the (half-integer and integer) angular momentum quantum numbers appear in an inproper combination.
3.
While a recursive generation of the Wigner 3-j and 6-j symbols [6] may reduce the costs of some computations (and has thus been utilized in the past), it also makes the program rather sophisticated, especially if an algebraic evaluation or computations with a high number of Digits need to be supported by the same generic commands. The following procedures are therefore no longer supported by the Racah module:Racah_compute_w3j_jrange(), Racah_compute_w3j_mrange(),Racah_compute_w3j_recursive(), Racah_compute_w6j_range(), andRacah_compute_w6j_recursive().On most PCs, a sequential computation of all requested symbols is carried out within the same time basically.
4.
Because the module Jucys has grown to a size of about 35,000 lines of code and data, it appears helpful and necessary to maintain it independently. The procedures from the Jucys modules were designed to facilitate the computation of matrix elements of the unit tensors, the coefficients of fractional parentage (of various types) as well as transformation matrices between different coupling schemes [7] and are, thus, independent of the Racah module (although they typically require that the Racah code is available). The Jucys module is no longer distributed together with the present code.
5.
Apart from the Wigner n-j symbols (see above), some minor bugs have been reported and corrected in Racah_expand() and Racah_set().
6.
To facilitate the test of the installation and as a first tutorial on the module, we now provide the Maple worksheet Racah-tests-2009-maple12.mw in the Racah2009 root directory. This worksheet contains the examples and test cases from the previous versions. For the test of the installation, it is recommended that a ‘copy’ of this worksheet is saved and compared to the results from the re-run. It can be used also as a helpful source to define new examples in interactive work with the Racah module.
The Racah module is distributed in a tar file ADFV_v10_0.tar.gz from which the RACAH2009 root directory is (re-)generated by the command tar -zxvf ADFV_v10_0.tar.gz. This directory contains the source code libraries (tested for Maple 11 and 12), a Read.me for the installation of the program, the worksheet Racah-tests-2009-maple12.mw as well as the document Racah-commands-2009.pdf. This .pdf document serves as a Short Reference Manual and provides the definition of all the data structures of the Racah program together with an alphabetic list of all user relevant (and exported) commands. Although emphasis was placed on preserving the compatibility of the program with earlier releases of Maple, this cannot always be guaranteed due to changes in the Maple syntax. The Racah2009 root also contains an example of a .mapleinit file that can be modified and incorporated into the user's home directory to make the Racah module accessible like any other module of Maple. As mentioned above, the worksheet Racah-tests-2009-maple12.mw, help test the installation and may serve as a first tutorial.Restrictions: The (Racah) program is based on the concept of Racah expressions [cf. Fig. 1 in Ref. [4]] which, in principle, may contain any number of Wigner n-j symbols (n?9), Clebsch-Gordan coefficients, spherical harmonics and/or rotation matrices. In practise, of course, the required time and the success of an evaluation procedure depends on the complexity of the expressions and on the storage available, sometimes also on Maple's internal garbage treatment. In some cases, it is advisable to attempt first a simplification of the magnetic quantum numbers for a given expression before the summation over further 6-j and 9-j symbols should be taken into account. For all other quantities (that are compiled in Ref. [8], Tables 1 and 2, and explained in more detail in the Short Reference Manual, Racah-commands-2009.pdf), we currently just facilitate fast numerical computations by exploiting, as far as possible, Maple's hardware floating-point model. The program also supports simplifications on the Wigner rotation matrices. In integrals over the rotation matrices, products of up to three Wigner D-functions or reduced matrices (with the same angular arguments) are recognized; for the integration over a solid angle, however, the domain of integration must be specified explicitly for the Euler angles α and γ in order to force Maple to generate a constant of integration. In the course of the evaluation of Racah expressions, it is, in practice, often difficult to check internally whether all substructures of an expression are defined properly. Therefore, the user must ensure that all angular momenta (if given explicitly) must finally evaluate to integer and half-integer values and that they satisfy proper coupling conditions.Unusual features: The Racah program is designed for interactive use and for providing a quick and algebraic evaluation of (complex) expressions from Racah's algebra. In the evaluation, it exploits a large set of sum rules which are known from Racah's algebra and which may include (multiple) summations over dummy indices; see Varshalovich et al. [5] for a more detailed account of the theory. One strength of the program is that it recognizes automatically the symmetries of the symbols and functions, and that it applies also (some of) the graphical rules due to Yutsis and coworkers [9]. As before, the result of the evaluation process will be provided as Racah expressions, if a further simplification could be achieved, and may hence be used for further derivations and calculations within the given framework. In dealing with recoupling coefficients, these coefficients can be entered simply as a string of angular momenta (variables), separated by commas, and very similar to how they appear in mathematical texts. This is a crucial advantage of the program, compared with previous developments, for which the angular momenta and coupling coefficients had often to be given in a very detailed format. A Short Reference Manual to all procedures of the Racah program is provided by this distribution; it also contains the worksheet Racah-tests-2009-maple12.mw that contains the examples from all previous versions and may help test the installation. This worksheet can serve as a first tutorial to the Racah procedures. In the past, the Racah program has been utilized extensively in a number of applications including angular and polarization studies of heavy ions [10], angular distributions and correlation functions following photon-induced excitation processes [11], entanglement studies [12], in application of point-group symmetries and several others.Running time: The worksheet supplied with the distribution takes about 1 minute to run.References:
[1] Maple is a registered trademark of Waterloo Maple Inc.
[2] S. Fritzsche, Comp. Phys. Commun. 103 (1997) 51.
[3] S. Fritzsche, S. Varga, D. Geschke, B. Fricke, Comp. Phys. Commun. 111 (1998) 167;
T. Ingho, S. Fritzsche, B. Fricke, Comp. Phys. Commun. 139 (2001) 297;
S. Fritzsche, T. Ingho, T. Bastug, M. Tomaselli, Comp. Phys. Commun. 139 (2001) 314.
[4] D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific, Singapore a.o., 1988.
[5] J. Pagaran, S. Fritzsche, G. Gaigalas, Comp. Phys. Commun. 174 (2006) 616.
[6] K. Schulten, R.G. Gordon, Comp. Phys. Commun. 11 (1976) 269.
[7] G. Gaigalas, S. Fritzsche, B. Fricke, Comp. Phys. Commun. 135 (2001) 219;
G. Gaigalas, S. Fritzsche, Comp. Phys. Commun. 149 (2002) 39;
G. Gaigalas, O. Scharf, S. Fritzsche, Comp. Phys. Commun. 166 (2005) 141.
[8] S. Fritzsche, T. Ingho, M. Tomaselli, Comp. Phys. Commun. 153 (2003) 424.
[9] A.P. Yutsis, I.B. Levinson, V.V. Vanagas, The Theory of Angular Momentum, Israel Program for Scientific Translation, Jerusalem, 1962.
[10] S. Fritzsche, P. Indelicato, T. Stöhlker, J. Phys. B 38 (2005) S707.
[11] M. Kitajima, M. Okamoto, M. Hoshino, et al., J. Phys. B 35 (2002) 3327;
N.M. Kabachnik, S. Fritzsche, A.N. Grum-Grzhimailo, et al., Phys. Reports 451 (2007) 155;
S. Fritzsche, A.N. Grum-Grzhimailo, E.V. Gryzlova, N.M. Kabachnik, J. Phys. B 41 (2008) 165601;
T. Radtke, et al., Phys. Rev. A 77 (2008) 022507.
[12] T. Radtke, S. Fritzsche, Comp. Phys. Commun. 175 (2006) 145.
  相似文献   

14.
15.
16.
17.
18.
HiggsBounds is a computer code that tests theoretical predictions of models with arbitrary Higgs sectors against the exclusion bounds obtained from the Higgs searches at LEP and the Tevatron. The included experimental information comprises exclusion bounds at 95% C.L. on topological cross sections. In order to determine which search topology has the highest exclusion power, the program also includes, for each topology, information from the experiments on the expected exclusion bound, which would have been observed in case of a pure background distribution. Using the predictions of the desired model provided by the user as input, HiggsBounds determines the most sensitive channel and tests whether the considered parameter point is excluded at the 95% C.L. HiggsBounds is available as a Fortran 77 and Fortran 90 code. The code can be invoked as a command line version, a subroutine version and an online version. Examples of exclusion bounds obtained with HiggsBounds are discussed for the Standard Model, for a model with a fourth generation of quarks and leptons and for the Minimal Supersymmetric Standard Model with and without CP-violation. The experimental information on the exclusion bounds currently implemented in HiggsBounds will be updated as new results from the Higgs searches become available.

Program summary

Program title: HiggsBoundsCatalogue identifier: AEFF_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFF_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 55 733No. of bytes in distributed program, including test data, etc.: 1 986 213Distribution format: tar.gzProgramming language: Fortran 77, Fortran 90 (two code versions are offered).Computer: HiggsBounds can be built with any compatible Fortran 77 or Fortran 90 compiler. The program has been tested on x86 CPUs running under Linux (Ubuntu 8.04) and with the following compilers: The Portland Group Inc. Fortran compilers (pgf77, pgf90), the GNU project Fortran compilers (g77, gfortran).Operating system: LinuxRAM: minimum of about 6000 kbytes (dependent on the code version)Classification: 11.1External routines: HiggsBounds requires no external routines/libraries. Some sample programs in the distribution require the programs FeynHiggs 2.6.x or CPsuperH2 to be installed (see “Subprograms used”).Subprograms used:
Cat IdTitleReference
ADKT_v2_0FeynHiggsv2.6.5CPC 180(2009)1426
ADSR_v2_0CPsuperH2.0CPC 180(2009)312
Full-size table
  相似文献   

19.
20.
In this article, we study the set cover games when the elements are selfish agents, each of which has a privately known valuation of receiving the service from the sets, i.e., being covered by some set. Each set is assumed to have a fixed cost. We develop several approximately efficient strategyproof mechanisms that decide, after soliciting the declared bids by all elements, which elements will be covered, which sets will provide the coverage to these selected elements, and how much each element will be charged. For single-cover set cover games, we present a mechanism that is at least -efficient, i.e., the total valuation of all selected elements is at least fraction of the total valuation produced by any mechanism. Here, dmax is the maximum size of the sets. For multi-cover set cover games, we present a budget-balanced strategyproof mechanism that is -efficient under reasonable assumptions. Here, Hn is the harmonic function. For the set cover games when both sets and elements are selfish agents, we show that a cross-monotonic payment-sharing scheme does not necessarily induce a strategyproof mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号